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Search and match across spatial omics 
samples at single-cell resolution

Zefang Tang    1,2,3, Shuchen Luo    1,2,3, Hu Zeng1,2, Jiahao Huang    1,2, Xin Sui    1,2, 
Morgan Wu    1 & Xiao Wang    1,2 

Spatial omics technologies characterize tissue molecular properties with 
spatial information, but integrating and comparing spatial data across 
different technologies and modalities is challenging. A comparative analysis 
tool that can search, match and visualize both similarities and differences of 
molecular features in space across multiple samples is lacking. To address 
this, we introduce CAST (cross-sample alignment of spatial omics), a deep 
graph neural network-based method enabling spatial-to-spatial searching 
and matching at the single-cell level. CAST aligns tissues based on intrinsic 
similarities of spatial molecular features and reconstructs spatially resolved 
single-cell multi-omic profiles. CAST further allows spatially resolved 
differential analysis (∆Analysis) to pinpoint and visualize disease-associated 
molecular pathways and cell–cell interactions and single-cell relative 
translational efficiency profiling to reveal variations in translational control 
across cell types and regions. CAST serves as an integrative framework 
for seamless single-cell spatial data searching and matching across 
technologies, modalities and sample conditions.

Spatial omics technologies enable direct profiling of gene expres-
sion and molecular cell types in intact tissues, organs1–5 and across 
different modalities such as epigenomes6, translatomes7 and pro-
teomes8. Analogous to atlas integration for single-cell omics, an ideal 
spatial integration tool for spatial omics should serve as a search 
engine and comparative analyzer to search, match and visualize the 
similarity and differences among samples. Meanwhile, it should work 
robustly when dealing with vast numbers of cells, spanning various 
conditions and modalities. As spatial transcriptomics data contains 
much richer information than traditional staining (for example 
4',6-diamidino-2-phenylindole (DAPI), hematoxylin and eosin (H&E) 
and Nissl), transcriptomics-based registration may be more advan-
tageous and accurate than established image-based registration. 
Additionally, image-based registration may be compromised when 
the staining method, quality, resolution or sample size are different 
between the training models and query images; however, current 
transcriptomics-based spatial alignment methods9 can only handle 
small-scale, low-resolution and highly similar datasets collected from 
the same wet-lab technology. On the other hand, image registration 

methods typically require landmark annotations and struggle with 
discrepancies in image properties. Moreover, effective full-stack spatial 
integration methods that allow accurate search-and-match of spatial 
omics data across technologies, modalities and conditions have not 
been achieved yet.

To address this, we introduce CAST (cross-sample alignment of 
spatial omics data) for searching, matching and visualizing the similari-
ties and differences across spatial omics datasets. CAST is composed of 
three modules: CAST Mark, CAST Stack and CAST Projection (Fig. 1a,b). 
It leverages deep graph neural networks (GNNs) and physical align-
ment to harmonize spatial multi-omics data at the single-cell level 
while preserving cellular proximity in tissue niches. CAST can detect 
fine-grained common spatial features, perform robust physical align-
ment and integrate samples of different spatial modalities, resolutions 
and sizes. It is applicable across various low- and high-resolution spatial 
technologies (Visium, STARmap5, MERFISH2, RIBOmap7, Slide-seq3 and 
Stereo-seq4) and can accurately match spatial samples of different sizes 
and gene numbers based on their inherent tissue properties, without 
supervision nor manual annotation of the region of interest (ROI).
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identify the common spatial features across the samples in an unsuper-
vised manner. To address these limitations, we created CAST Mark, a 
GNN model equipped with (1) graph convolutional network via initial 
residual and identity mapping (GCNII) layers, which were designed to 
overcome the over-smoothing problem16, making the GNN learnable 
with a nine-layer depth; and (2) a self-supervised learning objective 
(Extended Data Fig. 1a and Methods). By using the GCNII layers, CAST 
Mark overcomes the limited depth in a traditional GNN model and now 
has a large receptive field that enables unsupervised learning of spatial 
features using only single-cell gene expression profiles and physical 
cell coordinates as input, without requiring cell-type or tissue-region 
annotations. We further confirmed the technical advancement and 

Results
CAST Mark captures common spatial signatures across 
samples
Representing tissue samples using graphs8 shows the potential to 
overcome the inconsistent physical coordinates caused by different 
magnification, individual variation and experimental batch effects. 
GNNs operate on graphs and have been recently used to learn repre-
sentations of tissue organization of spatially resolved transcriptomics 
measurements10–15; however, traditional GNN architectures suffer from 
the over-smoothing problem that limits the depth of the network, rais-
ing doubts about their capability to capture large-scale continuities in 
tissue biology14. In addition, the traditional GNN architectures cannot 
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Fig. 1 | Schematic overview of CAST. a, The principles of the three modules in 
CAST. b, The applications enabled by the three modules of CAST. c, CAST Mark 
identifies consistent regions across multiple samples. The k-means (k = 15) 
clustering results of the graph embedding generated by CAST Mark across 
the samples S1–S8 in the STARmap PLUS dataset (Supplementary Table 2), in 
comparison with the Allen Brain Atlas17,18. Different colors in the cells indicate 

the different clusters of the graph embedding. UMAP, Uniform Manifold 
Approximation and Projection; CTX, cerebral cortex; RSP, retrosplenial 
area; WM, white matter; DG, dentate gyrus; CAslm, CA stratum lacunosum-
moleculare; CA1–3, hippocampal CA1–3 region; L2/3, L4, L5, L6, cortical layers 
2/3, 4, 5 and 6, respectively.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | October 2024 | 1818–1829 1820

Article https://doi.org/10.1038/s41592-024-02410-7

performance of the CAST Mark model by parameter sensitivity and abla-
tion studies (Supplementary Figs. 1–3 and Supplementary Information).

To evaluate the performance of the CAST Mark in learning the 
graph representations of cell locations across different samples, 
we first applied CAST Mark to a synthetic dataset consisting of one 
ground-truth sample (S1) from a STARmap PLUS dataset5 and a simu-
lated sample (S1′) generated by applying random noise, feature drop-
outs and global tissue distortion to sample S1 (Extended Data Fig. 1b 
and Methods). Each cell in the simulated sample S1′ has a one-to-one 
ground-truth partner cell in sample S1. We performed k-means clus-
tering on the graph embedding to examine whether CAST Mark could 
retain the shared spatial information between S1 and S1′. Although 
the graph structures of S1 and S1′ are different due to added random 
noise, the regional patterns are consistent across samples in both the 
physical space (Extended Data Fig. 1c) and the graph embedding space 
(Extended Data Fig. 1d). These observations are confirmed by quantita-
tive analysis, where 20 clusters show a high adjusted Rand index (ARI) 
(averaged ARI = 0.79, ten replicates) and on average 90% of cells in S1′ 
belong to the same clusters as its ground-truth partners in S1 (Extended 
Data Fig. 1e). Notably, even when increasing the number of clusters k 
to 100, the clustering results still show a considerable cross-sample 
consistency both by visual inspection and quantification (Extended 
Data Fig. 1e,f; averaged ARI = 0.47, averaged consistent cell percent-
age of 56%). Furthermore, despite different clustering parameters 
(10–100), each cell is still physically adjacent (average distance of 
6.95 µm, smaller than the typical size of a cell) to the correct clusters 
(Extended Data Fig. 1g), suggesting the robust performance of CAST 
Mark despite sample variability.

Benchmarks of the CAST Mark GNN (Supplementary Table 1) show 
superior performance than existing methods in terms of resolution and 
contiguity in sample S1 (Extended Data Fig. 1h) and a mouse half-brain 
coronal sample containing ~60,000 cells (Extended Data Fig. 1i).

Encouraged by the cross-sample consistency of CAST Mark graph 
embedding trained on the synthetic dataset, we next examined whether 
CAST Mark could achieve consistent label-free segmentation with 
real biological samples. We applied CAST Mark to the 2,766-gene  
STARmap PLUS dataset5 composed of eight coronal brain slices near 
the hippocampus region (slices S1–S8) from multiple mice with dif-
ferent conditions, ages and strains (Supplementary Table 2). K-means 
clustering (k = 15) yielded consistent tissue-region identification across 
the eight samples (Fig. 1c), which agreed well with existing knowledge 
of mouse brain anatomy17,18. We further tested an extremely high clus-
tering resolution by 100-class k-means clustering (k = 100) and the 
results still showed remarkable consistency across the eight samples 
(Extended Data Fig. 2a), suggesting the ability of the CAST Mark learn-
ing scheme in resolving fine tissue architectures consistently across 
all samples, although the biological meaning of those fine clusters 
warrants further investigation.

Notably, the consistent patterns of gene expression and cell-type 
abundance (Extended Data Fig. 2b–d and Supplementary Table 3) 
across the eight samples strongly support that CAST can robustly iden-
tify the concordant and biologically meaningful spatial features across 
different samples with biological and individual variations, which are 
further used as a foundation for sample alignment.

CAST Stack performs robust physical alignment across 
samples
As the cytoarchitecture of tissue samples falls on a spectrum between 
completely stereotypical to random, an ideal alignment method should 
meet the following requirements: (1) robust correction of local dif-
ferences in batches, conditions, tissue morphology and experimen-
tal technologies; and (2) preservation of cellular organization inside  
the tissue.

As CAST Mark is capable of generating common graph embed-
dings for cells across multiple samples, we hypothesize that the 

similarity of cellular graph embeddings reflects the physical proxim-
ity of the cells in tissues and thus can be used to physically register one 
query tissue sample to the reference sample. To test this, we used the 
synthetic sample (S1′) as the query and the ground-truth sample (S1) 
as the reference. Given one cell in the query sample, we calculated the 
Pearson correlation (r) between the graph embeddings of the query cell 
and all the cells in the reference sample. We found that ground-truth 
pairs between S1 and S1′ show a strong correlation (average r = 0.97; 
Fig. 2a), while randomly chosen cell pairs show little correlation (aver-
age r = 0.04; Fig. 2a). And only its ground-truth paired cell and the clos-
est randomly paired cells (top 0.1%) to this ground-truth pair exhibited 
a strong Pearson correlation with the query cell (Fig. 2b). When plotted 
in the physical space, cells in the reference sample that are highly cor-
related with the query cell are predominantly localized around the 
ground-truth reference cell, especially within the same tissue region 
(Fig. 2c and Extended Data Fig. 3a).

Based on this observation, we concluded that the cross-sample 
correlations of cell pairs could predict their probable match of tissue 
locations. However, due to the inherent anatomical diversity across 
samples, we would lose the cell organization if we simply assigned 
each query cell to the position with the highest similarity of the graph 
embedding. Therefore, we designed a gradient descent (GD)-based 
approach to minimize overall cell location differences while preserv-
ing tissue structure during alignment transformations, by maximizing 
the sum of similarity between each query cell and its nearest reference 
cell (Methods). Instead of building alignment by satisfying every 
cell at its optimum, CAST Stack prioritizes preserving biologically 
meaningful tissue structure and avoids local minimums possibly 
derived from stochastic sample variations. We designed the CAST 
Stack alignment as a two-phase process. During the first phase, only 
global affine transformation is allowed. After affine transformation 
roughly aligns the samples, in the second phase, CAST Stack utilizes 
B-spline free-form deformation (FFD), a powerful constrained non-
linear warping approach, to handle local morphological differences 
among tissue samples.

We then applied this soft registration strategy to the S1′–S1 
query–reference pair (Fig. 2d). Despite large structural and morpho-
logical differences introduced in S1′, the two samples were accurately 
aligned according to the high spatial correlations (Pearson r of graph 
embeddings between cells, same below unless otherwise stated) 
between the query cells and their nearest neighbors in the reference 
slice (Extended Data Fig. 3b). After the soft registration, the physical 
distances between the ground-truth pairs (average distance of 38 µm; 
Extended Data Fig. 3c) are significantly smaller than the random pairs 
(average distance of 1,133 µm; Extended Data Fig. 3c), confirming that 
CAST can precisely align two different slices into a consistent physical 
coordinate system.

Next, we applied CAST Stack to the eight hippocampal brain sam-
ples (S1–S8) from different mice with varied tissue morphologies, ages 
and conditions5. We selected S1 as the reference slice and subsequently 
aligned S2–S8 to S1 using CAST Stack. Similar to the S1′–S1 query– 
reference pair, cells from S2–S8 have the highest spatial correlation with 
cells from S1 at the corresponding tissue locations, especially within 
the same cluster of graph embeddings from CAST Mark (Extended Data 
Fig. 3d). After alignment, all the cells in the query samples (S2–S8) are 
transformed to the same physical coordinate system defined by the 
S1 reference (Fig. 2e and Extended Data Fig. 3e). The high correlation 
between the query cells with its closest physical neighbor cell in the S1 
reference (Extended Data Fig. 3e) suggests that CAST Stack properly 
aligns each sample through soft registration while preserving the cel-
lular organization of the tissues.

To demonstrate the wide utility of CAST, we applied CAST on dif-
ferent spatial technologies, such as Visium, Stereo-seq4, MERFISH19 
and Slide-seq20. Samples with similar size can be efficiently aligned 
not just within a single technology but also across multiple different 
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Fig. 2 | CAST Stack automatically aligns tissue samples from biological 
replicates. a, The boxplot shows a significantly higher (one-way analysis of 
variance (ANOVA); P < 2.2 × 10−16) Pearson correlation of graph embedding of  
the ground-truth cell pairs (ground-truth, mean of 0.97, n = 8,789) than the 
ones in the random distribution (random, mean of 0.04, n = 8,789) between 
samples S1′ and S1. b, For each query cell in the query sample (S1′), the CAST Mark 
embedding Pearson correlation (r) between this query cell and randomly paired 
cells as well as its ground-truth pair in the reference sample S1 is calculated.  
The horizontal axis indicates the distance percentile (%) of the randomly paired 
cell to the ground-truth pair. For example, 0.1 indicates the percentile group 
0–0.1%, whereas 100 indicates the percentile group 90–100%. In the boxplots 

(a,b), the middle line indicates the median; and the first and third quartiles are 
shown by the lower and upper lines, respectively; the upper and lower whiskers 
extend to values not exceeding 1.5 × interquartile range (IQR). The number of 
samples is detailed in the Methods. c, Given the query cell in the query sample 
(simulated dataset S1′), the cells in the reference sample (S1) are colored by 
Pearson correlation of the graph embedding between the reference cells and 
the given query cell. d, Schematic demonstration of the CAST Stack alignment 
process. The alignment process of the simulated dataset S1′ (query sample) and 
S1 (reference sample) is visualized. e, CAST Stack aligns eight samples (S1–S8) 
into a consistent physical coordinate system. Cells are colored by tissue region 
labels generated by CAST Mark, the same as is shown in Fig. 1c.
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technologies (Fig. 3a, Extended Data Fig. 4a–d and Supplementary 
Table 4). Notably, samples from three different technologies can be 
aligned into one shared physical coordinate system (Fig. 3a). Addition-
ally, we also tested the performance of CAST Mark and CAST Stack 
with limited gene panels. CAST successfully aligned two STARmap 
samples collected with a small panel of 64 genes (S64_1 and S64_2; 
Extended Data Fig. 4e). CAST also aligned samples with drastically 
different gene panels with limited overlapping genes, showcased by 
the successful alignment of a 64-gene sample to a 2,766-gene sample 
(S64_1 and S1; Fig. 3b).

Notably, CAST shows the capability to precisely locate a small, 
truncated tissue section (hippocampus and partial cortical region) with 
larger half-brain slices measured by different spatial technologies and 
size (STARmap, MERFISH and Slide-seq), without manually specifying 
the ROI nor annotating landmarks (Fig. 3c, Extended Data Fig. 4f,g and 
Supplementary Video 1).

Given the ability of CAST to precisely match partially overlapping 
tissue locations between small and large tissue slices, we explored its 
potential to search one query sample against large reference atlas 
datasets/databases. We utilized the STARmap S1 sample, a subset of 
mouse coronal brain section, to query against a mouse central nerv-
ous system spatial transcriptomics atlas21 (2,766 versus 1,022, with 
931 overlapping genes, Fig. 3d). Each section in the atlas is annotated 
with the distance to bregma that describes the relative depth along 
the anterior–posterior axis of the brain, which was obtained through 
physical registration with the Allen Mouse Brain Common Coordinate 
Framework (CCFv3) (ref. 18). These coronal brain sections represent 
different tissue morphology and anatomy of the mouse brain and could 
serve as a reference atlas for future query applications. We conducted 
the atlas query in the following two steps (Fig. 3d). First, we conducted 
a coarse search by using CAST Stack allowing only affine transforma-
tion to align the query sample S1 to all coronal sections in our reference 
atlas using shared uniform parameters. We reasoned that for each 
depth in the reference atlas, this could allow for a quick search of the 
most similar tissue locations possible to place the query sample S1. We 

visualized loss values of CAST Stack (the sum of the adjusted Pearson 
distance) after alignment. From this initial screening run with the 
affine transformation, we identified three sections in the reference 
atlas with the lowest loss values, which indicates the highest similarity 
(Fig. 3e). The sections are located adjacent to each other (the distances 
to bregma are −1.155 mm, −1.755 mm, −2.355 mm, respectively) along 
the anterior–posterior axis. Second, we further conducted a fine search 
by applying the full CAST Stack with both affine and nonrigid B-spline 
transformation to find the best match between S1 and three hits from 
the coarse search phase (Fig. 3f; distance to bregma = −1.755 mm).

In addition to benchmarking the parameters and the compu-
tational efficiency (Supplementary Figs. 4 and 5), we compared 
CAST with the existing spatial alignment tool PASTE, which adopts 
optimal transport to perform only global affine transformation to 
align voxel-based spatial transcriptomics data9. PASTE successfully 
aligned the Visium datasets (Supplementary Fig. 6a,b) but failed to 
align single-cell-resolved transcriptomics datasets (S2–S8 with S1) 
(Supplementary Fig. 6c–e) or align the spatial datasets with a large 
number of cells or voxels (Supplementary Table 5).

Identifying disease/injury-associated spatial features
Traditional single-cell analysis workflows can be adapted to find sig-
nificant differences between samples, such as cell-type abundance, 
differential gene expression and cell–cell interactions (CCIs) in the spa-
tial transcriptomics data5; however, by preserving single-cell resolved 
spatial relationships, it is possible to interrogate the continuous spatial 
gradients of such differences in cellular neighborhoods across multiple 
samples with unified tissue coordinates22 (Fig. 4a). Here, enabled by the 
physical alignment of CAST Stack, we further introduce a new spatial 
omics analysis strategy, delta-sample analysis (∆Analysis; Methods), 
to uncover comparative spatial heterogeneity across tissue samples: 
(1) given a cell and a physical radius (R), we first defined a cell-centered 
neighborhood, termed the spatial niche; (2) we then analyzed the local 
difference of interrogated features between samples within R, such as 
cell abundance (∆Cell), gene expression (∆Exp), cell–cell adjacency 

Fig. 3 | CAST aligns tissue samples across spatial technologies regardless of 
different tissue areas and gene panel sizes. a, CAST integrates three samples 
of Slide-seq20, MERFISH19 and STARmap (STARmap_mouse1 (ref. 7)), respectively, 
generating a shared physical coordinate system. (i) The joint k-means clustering 
results of CAST Mark graph embeddings of STARmap (left), Slide-seq (middle) 
and MERFISH (right), colored by joint clusters. (ii,iii) Spatial coordinates of 
the samples before (ii) and after (iii) alignment. (iv,v) Aligned samples colored 
by joint k-means clustering results of the graph embedding (two-dimensional 
visualization (iv) and three-dimensional visualization (v)). b, CAST Stack aligns 
the samples with different gene panels and different probe designs. STARmap_64 
(left) is S64_1 (ref. 5) (Supplementary Table 2) and STARmap_2766 (right) is S1. 
The two samples share only 64 genes. The panel order is the same as in a. c, CAST 
automatically searches and matches a small slice (left) to a big slice (right) across 

technologies at high spatial resolution (STARmap (S1) versus MERFISH19). The 
panel order is the same as in a. d, The flowchart shows the two-step strategy to 
align query sample S1 (same as Fig. 1c for visualization) to the reference atlas. 
e, The loss value (the sum of the adjusted Pearson distance) is used as a score 
to screen for possible hits (only perform affine transformation). A score funnel 
is formed around the ground-truth slicing depth (calculated as the distance to 
bregma), indicating the possible matching tissue slices are sliced at the depth 
range of −1.155 mm to −2.355 mm. f, The complete CAST Stack alignment with 
optimized parameters were performed among the screened hits to identify the 
most matching tissue locations of the query sample. Final CAST Stack alignment 
results (right) are shown along with loss values (left). The aligned result of well11 
is also displayed in d.

Fig. 4 | Delta-sample analysis detects disease-associated spatial features.  
a, ∆Analysis is performed to interrogate the spatial differences between different 
conditions (Supplementary Table 2). b, The UMAP of the ∆Exp (R = 20 µm) 
spatial-pattern-based clustering results (left), paired with the Pearson 
correlation (r) of the ∆Exp with the Aβ plaque score (middle) and p-tau score 
(right) across all disease samples. c, Cell type, Aβ plaque (dark green dots) and 
p-tau (pink) profile of S8 (left). Averaged ∆Exp of C1 (middle) and C3 (right) genes 
paired with the contour lines (middle and right). The zoomed-in sections show 
the details of the cell type, Aβ plaque and p-tau in S8, as well as the averaged 
∆Exp (log2_norm1e4) of C1, C2 and C3 genes in the same ROI. The size of the dark 
green dot indicates the area of Aβ plaques. The following heatmaps show the 
averaged scaled ∆Exp profile of three clusters within each cluster in different cell 
groups. The cells are grouped by their distances to the nearest Aβ plaque (left) 
and their tau values (right). Astro, astrocyte; CA1, CA1 excitatory neuron; CA2, 
CA2 excitatory neuron; CA3, CA3 excitatory neuron; CTX-Ex, cortex excitatory 

neuron; Endo, endothelial cell; Inh, inhibitory neuron; Micro, microglia; Oligo, 
oligodendrocyte; OPC, oligodendrocyte precursor cell; SMC, smooth muscle 
cell; LHb, lateral habenula. d, Dot plots show the difference in cell type ratios 
between the hot-zone of the C1, C2, C3 and their non-hot-zone groups. The dot 
size indicates the cell count number in the hot-zone. e, GO enrichment analysis of 
the C1–C3. f, The ∆CCI (R = 50 µm) pattern of the Apoe (Micro) - Trem2 (Micro) in 
the 13-month comparison (S8 − (S3 + S4)/2). The size of dark green dots shows Aβ 
plaque area. The dash lines indicate the different CAST Mark regions. g, The ∆CCI 
pattern of selected ligand–receptor pairs in different regions and comparisons. 
The dot size indicates the spatial correlation between ∆CCI and Aβ plaque. h, The 
average spatial correlation (Pearson r) between the ∆CCA (R = 50 µm) and the Aβ 
plaque score as well as p-tau scores (Methods) are displayed. The values of four 
combinations in each comparison are averaged (13-month comparison, S7 − S3, 
S7 − S4, S8 − S3 and S8 − S4; 8-month comparison, S5 − S1, S5 − S2, S6 − S1 and 
S6 − S2).
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(∆CCA) and CCI (∆CCI, for example ligand–receptor interactions), 
which can be visualized as spatial gradient maps (Fig. 4a); and (3) by 
aggregating the local ∆ features of single cells throughout the replicates 
and samples, we conducted statistical analysis at a single-cell level to 
test whether there was a significant difference of spatially resolved 
features between samples.

Next, we demonstrate ∆Analysis on S1–S8, which are collected on 
four TauPS2APP Alzheimer’s disease (AD) mice and four age-matched 
wild-type mice (Fig. 4a).

To unbiasedly uncover the disease-associated loci, we first clus-
tered the genes based on their similarity of ∆Exp spatial profiles across 
all disease samples (Fig. 4b). We observed that gene clusters C1, C2 
and C3 displayed relatively high correlation of ∆Exp with the amyloid 
beta (Aβ) plaque and p-tau (Fig. 4b), which hinted that these gene 
modules may associate with AD. Next, we plotted the heterogenous 
∆Exp landscape of the C1–C3 as contour maps (Fig. 4c) and further 
defined the hot-zones as the loci with the highest differential expres-
sion of these gene clusters (Methods). Notably, the C1 hot-zone con-
tained remarkable Aβ plaque enrichment (Fisher’s exact test and odds 
ratio: 13 months, 15.8 and 16.48, respectively; and 8 months, 10.87 
and 16.63, respectively) and C1 genes were over-expressed in the cells 
close to the Aβ plaque (0–10 µm group; Fig. 4c, Extended Data Fig. 5a 
and Supplementary Table 6). In contrast, C3 hot-zone was enriched 
with p-tau (Fisher’s exact test and odds ratio: 13 months, 1.98 and 5.78 
months, respectively; and 8 months, 3.43 and 2.56, respectively) and 
C3 genes were upregulated in the cells with high p-tau values (p-tau 
value > 10 group; Fig. 4c, Extended Data Fig. 5b and Supplementary 
Table 6). The C1 and C3 hot-zones were also enriched with microglia 
and oligodendrocytes, respectively (Fig. 4d). Also, the C2 hot-zone was 
mainly enriched with astrocytes, whose expression was upregulated 
in the 20–40 µm vicinity of Aβ plaques and spatially associated with 
the immediate intensity group of p-tau. Meanwhile, the Gene Ontol-
ogy (GO) analysis of these three gene modules (Fig. 4e) showed that 
these genes are related to cell migration (GO:0016477; shared by C1, 
C2 and C3), apoptotic process (GO:0006915; unique to C1), regulation 
of response to wounding (GO:1903034; unique to C2) and regulation 
of oligodendrocyte differentiation (GO:0048713; unique to C3). Con-
sistent with a previous publication5, these observations revealed the 
disease association of microglia, oligodendrocytes and astrocytes, 
which were further validated by the cell-type-specific ∆Exp and ∆Cell 
(Extended Data Fig. 5c–i, Supplementary Fig. 7 and Supplementary 
Information). We further investigated disease-associated CCA and 
CCIs23, which revealed Aβ-plaque-associated changes of the glial cell 
adjacency network and ligand–receptor interactions (ligand Apoe in 
microglia or astrocytes–Trem2 receptor in microglia24–27 and ligand 
Mfge8 in astrocyte–Itgb5 receptor in microglia28) along disease progres-
sion (Fig. 4f–h and Extended Data Fig. 5c,j).

Beyond the disease versus control demonstration to delineate 
the spatial and temporal changes during disease progression, we next 
applied CAST and ∆Analysis to the axolotl brain regeneration dataset 
profiled by Stereo-seq29. This axolotl brain dataset contains coronal 
slices of the axolotl brain with experimentally introduced injuries 
on one hemisphere, while the other hemisphere remained intact and 
healthy as the control at different days post-injury (DPI) along the brain 
regeneration process. We performed CAST alignment to physically 
align the injured brain hemisphere to the healthy brain hemisphere 
within each sample (Extended Data Fig. 6a,b). Afterwards, the ∆Analysis 
(radius of 100 in initial pixel units in the dataset, 43 µm as indicated by 
the scale bar in the initial study) was applied to each aligned sample to 
investigate the injury-associated spatial molecular patterns.

With the ∆Cell analysis, we observed cell types with relatively 
decreased and increased cell counts in the injured region, such as the 
decreased Nptx+ lateral pallium excitatory neurons (nptxEX) and the 
increased reactive ependymoglial cells (reaEGC) at the 2DPI stage (Sup-
plementary Fig. 8a), consistent with an initial report29. Concordantly, 

the ∆Exp screening also revealed the decreased Nptx1 (marker gene 
for nptxEX cells) and increased S100a10 (marker genes for reaEGCs) 
patterns in the lesion region of 2DPI stage. To systematically discover 
injury-associated gene programs, we next clustered the genes based 
on the spatial profiles of the ∆Exp across all samples (Extended Data 
Fig. 6c,d). By screening averaged ∆Exp profiles in each gene, we iden-
tified two gene clusters with increased gene expression (cluster 6 
and 9). Furthermore, the averaged ∆Exp of the two clusters showed a 
spatially confined expression pattern around lesion sites (Extended 
Data Fig. 6e). We thus annotated them as injury-associated genes for 
downstream analyses. Cluster 6 enriched with previously reported 
injury-associated genes, such as S100a10, Nes, Ctsl, Tnc, Gfap and 
Krt18, whereas cluster 9 contained lots of ribosomal genes, such as 
Rps2, Rps7 and Rps18. As reflected by the GO analysis (Extended Data 
Fig. 6f), cluster 6 and 9 genes are functionally enriched in ribosome 
biogenesis (GO:0042254; shared by cluster 6 and 9), regulation of 
apoptotic process (GO:0042981; unique to cluster 6) and regulation of 
RNA splicing (GO:0043484; unique to cluster 9), suggesting potential 
upregulated roles of post-transcriptional gene regulation, including 
translational control in tissue regeneration. In addition, we visualized 
a few examples of newly identified injury-associated genes, such as the 
galectin 1 gene Lgals1, actin-binding protein Tagln2, and ribosomal 
proteins Rps7 and Rps18, which displayed a strong increased pattern 
in the lesion region across all DPI time points (Supplementary Fig. 8b).

Overall, the spatial gradient obtained through our ∆Analysis 
reveals the spatial heterogeneity of cell-type composition, gene expres-
sion and cell–cell communications in diseased or injured samples 
versus controls, which enables us to analyze disease pathology or 
regeneration process at a higher spatial resolution.

CAST Projection reconstructs spatial multi-omics datasets
Beyond performing ∆Analyses, consistent spatial coordinates gener-
ated by CAST Stack further allow us to integrate samples with differ-
ent spatial omic modalities. Here, we introduce CAST Projection, an 
unsupervised, label-free method to project single cells from query 
samples onto a reference sample toward spatially resolved single-cell 
multi-omics (Fig. 5a). To achieve this, it assigns single cells from the 
query samples to the reference sample with the closest physical loca-
tion and the most similar gene expression profile (for example the 
same cell type and cell state). Specifically, we first conducted Combat30 
and Harmony31 (Methods) single-cell data integration of the query 
and reference samples across different omic modalities to generate a 
shared low-dimensional latent space, where cosine distance, a widely 
used metric in single-cell analysis32–34, is used to measure the similarity 
of cells across modalities. Given one reference cell, CAST Projection 
then searches for the cell with the closest cosine distance from the 
query sample within a confined physical radius as the matched cell pair 
(Methods). With well-aligned samples from CAST Stack, we can easily 
project the cells from multiple query samples to a shared reference 
sample with identical tissue coordinates.

We first evaluated the performance of CAST Projection using four 
control samples (S1–S4). When performing projection from S4 (query) 
to S1 (reference) (Fig. 5b and Supplementary Video 2), the Euclidean 
distance of assigned cell pairs indicated that most of the cells in the 
query slice were assigned to the reference slice with small distances 
(median distance of 72 µm; Fig. 5c). Meanwhile, the cell types of ref-
erence cells were highly concordant with their assigned query cells, 
shown by the confusion matrix of cell type assignments (91% matched 
labels; Fig. 5d–f and Extended Data Fig. 7a), which further supports that 
CAST correctly projects single cells from one tissue slice to another with 
the accurate match of spatial location and gene expression profiles.

Using CAST Projection, we finally integrated four biological sam-
ples (S1–S4) into one spatial common coordinate framework (Extended 
Data Fig. 7b–d) in which every single cell consists of four gene expres-
sion profiles (Fig. 5g). Gene expression profiles showed consistent 
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spatial patterns across S1–S4 before and after projection, such as Snap25 
(Fig. 5g), Mobp and Tshz2 (Extended Data Fig. 7e). Notably, experimental 
flaws (for example tissue distortion, slice fracture and missing imaging 
tiles) in individual slices do not significantly harm the performance of 
CAST and can be well compensated for by aggregating information from 
multiple samples through the spatial and single-cell integration of the 
CAST Projection process (Fig. 5g and Extended Data Fig. 7e).

Next, we examined whether spatial constraints are necessary by 
comparing against an alternative projection strategy of matching 

query cells with each reference cell solely relying on single-cell cosine 
distance without spatial constraints (Fig. 5c and Supplementary 
Fig. 9). Although this strategy generated comparable results in 
terms of matching cell types, the projection plots and the physi-
cal distance histograms showed that the projections were much 
further away from the reasonable locations compared to the CAST 
Projection, pointing out the importance of the spatial constraints. 
Similarly, CAST Projection with spatial constraints outperformed 
existing single-cell-to-spatial integration tools, such as Tangram35 
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Fig. 5 | CAST Projection enables single-cell integration of spatial omics data 
across multiple samples. a, Strategy of the spatially and single-cell resolved cell 
assignment used by CAST Projection. b, Schematic for CAST Projection results. 
Dashed lines (100 randomly sampled assignment pairs for visualization) connect 
cells from the query sample (S4) with its destination cell in the reference sample 
(S1). Colors represent cell types. c, The distribution of the physical distances in 
the spatial single-cell projection of the S4 to S1. The blue is the CAST Projection 
strategy, while the yellow is the strategy that projects the query cell with the 
closest cosine distance to each reference cell without spatial constraints (same 
as Supplementary Fig. 9). d, UMAP of the batch-corrected latent space across 

S1–S4 samples (control samples). Colors follow figure legends in b. e, Confusion 
matrix of CAST Projection (S4 to S1, true positive rate of 0.91). To analyze cell 
types with an adequate sample size, we filtered out those that have fewer than 
ten cells in the reference sample. f, CAST Projection assignment examples from 
S4 (query sample, pink) to S1 (reference sample, blue) in the UMAP plot (top) 
and spatial coordinates (bottom; colors follow figure legends in b). g, CAST 
Projection reconstructs one sample with multiple datasets. Cells are colored by 
cell types (left) (colors follow figure legends in b); the Snap25 gene expression 
(raw count) profiles (right) in the original samples (top, S2–S4) and projected 
samples (bottom).
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and Cell2Location36 (Supplementary Fig. 10a,b). Both demonstrations 
collectively suggest that direct spatial-to-spatial alignment may be 
closer to the ground truth for spatial multi-omic integration in com-
parison with existing single-cell-to-single-cell or single-cell-to-spatial 
approaches.

Moreover, when replacing the integration embedding with the 
embedding generated by Seurat CCA37, MNN34 or LIGER38, CAST Pro-
jection also displayed satisfactory performance (Supplementary 
Fig. 10c–e), which indicates the flexibility of the CAST Projection. Fur-
thermore, CAST Projection can also be applied across different major 
spatial omics technologies, including Visium, MERFISH, Slide-seq and 
Stereo-seq (Extended Data Fig. 7f and Supplementary Table 4).

Spatially resolved single-cell translation efficiency
To demonstrate the capability of CAST Projection to integrate different 
modalities of spatial omic measurements, we applied CAST Projection 
for four brain samples whose transcriptomes and translatomes were 
profiled respectively with STARmap and RIBOmap technologies at 
single-cell resolution7 (Fig. 6a). While STARmap measures the cellular 
RNA expression with spatial information, RIBOmap selectively profiles 
the ribosome-bound RNA to probe protein translation in situ.

After performing joint cell typing and region segmentation 
using CAST Mark for the four brain samples (Fig. 6b,c, Extended 
Data Fig. 8a–e and Methods) and CAST Stack alignment, we applied 
CAST Projection to project the STARmap cells to the RIBOmap cells 
(Fig. 6a). To validate the integration performance, we compared 
cell-type correspondence between query and reference cells, all of 
which showed accurate integration results (averaged percentage of 
matched labels of 85%; Extended Data Fig. 8f). After CAST Projection 
generated integrated tissue samples in which each cell contained 
both RIBOmap and STARmap measurements, we further defined 
single-cell relative translation efficiency (scRTE) as the normalized 
ratio of RIBOmap reads divided by STARmap reads in each cell (Fig. 6d 
and Methods).

By profiling scRTEs across all genes, we sought to analyze the 
spatial heterogeneity of scRTEs across cell types and tissue regions. 
To this end, we first grouped genes into gene modules based on their 
mean expression profile across different cell types, which resulted in 11 
gene modules (M1–M11; Extended Data Fig. 9a,b). We then conducted 
cell-type-specific scRTE analysis within each cell type with gene mod-
ules that had adequate expression: M1–M5 and M9 in neurons, M6 in 
astrocytes, M7 in microglia, M8 in oligodendrocytes, M10 in vascu-
lar cells and M11 in astro-ependymal cells (Supplementary Table 7), 
which revealed widespread cell-type- and tissue-region-dependent 
translational regulation.

In oligodendrocytes, we detected dramatically different scRTE 
levels of M8 genes between fiber tracts and other regions, which involve 
axon ensheathment, nervous system development and myelination. 
For example, Mbp, Plekhb1, Ptma and Qdpr showed significantly high 
scRTE levels in fiber tracts, in contrast, Fth1 showed relatively low scRTE 
levels (Fig. 6e and Extended Data Fig. 10a). The differential transla-
tional regulation of these genes in the fiber tracts versus other regions 
indicates regional specialization of protein synthesis to support  
oligodendrocyte functions (for example myelination). In astrocytes, 
Atp1a2 showed higher scRTE levels in the thalamus region (Fig. 6f and 
Extended Data Fig. 10b). In telencephalon interneurons, the translation 
elongation factor Eef1a1 had higher scRTE levels in the thalamus than 
other regions, whereas the Kif5a exhibited lower levels in the thalamus 
(Fig. 6g and Extended Data Fig. 10c). In telencephalon-projecting 
neurons, Cplx2 and Ppp1r2 both showed lower levels in the striatum 
region (Fig. 6h and Extended Data Fig. 10d). These results support the 
heterogeneity of translation efficiency across different cell types or 
anatomical regions and the necessity to investigate messenger RNA 
translation regulation with both single-cell and spatial resolutions in 
future studies.

Discussion
In summary, we demonstrated that CAST enables search-and-match 
across samples based on their spatially resolved molecular similarities 
while uncovering and visualizing the variability driven by spatial differ-
ences. Such multi-technology spatial–spatial integration will benefit 
users to combine the strengths of different spatial technologies by 
cross-reference across various spatial resolutions and gene panels. 
Meanwhile, CAST also shows the capability for potential atlas query 
applications. With CAST, users could input the ROI from one tissue slice 
and search large reference spatial omics datasets for the best-matching 
tissue location for their sample.

With well-aligned samples from CAST Stack, ∆Analysis reveals 
spatially heterogeneous patterns of different molecular characteris-
tics, thereby enabling identification of disease hallmark-associated 
gene clusters without the need of cell-type and tissue-label annota-
tions, which opens new perspectives toward a deeper understanding 
of disease, injury and regeneration mechanisms. We also integrated a 
spatially resolved translatome (RIBOmap) and transcriptome (STAR-
map) to uncover the spatial translation efficiency landscape of brain 
tissues at the single-cell level.

We note that the performance of CAST ∆Analysis depends on 
the accuracy of tissue alignment. Thus, it is critical for the users to 
pay attention to the Pearson similarity scores provided in the CAST 
Stack results (Extended Data Fig. 3b) and filter misaligned cells and 
regions when needed for quality control. Meanwhile, increasing bio-
logical replicates can reduce the variations from individual samples 
and increase the confidence of cross-condition comparison (for exam-
ple disease versus control). Furthermore, the choice of radius in the 
cell-centered neighborhood may influence the biological focus of 
∆Analysis (large regional changes versus local changes). Additionally, 
due to the warping introduced during the CAST Stack alignment, the 
∆Cell from ∆Analysis may represent a relative change of local cell-type 
composition rather than absolute change of cell densities. If needed, 
the absolute cell density analysis could be performed before alignment.

CAST provides a comprehensive and modular framework for 
the integration and differential analyses of spatial omics data across 
biological replicates, measurement modalities and disease conditions 
with both spatial and single-cell resolutions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Data preprocessing
In all the spatial omics datasets used, we normalized the sum of the 
raw read counts of each cell to 1 × 104 (referred to as norm1e4). We then 
applied a log2 transformation to the normalized counts (referred to 
as log2_norm1e4). Finally, the expression values were scaled without 
zero-centering (referred to as ‘scale’). Each data transformation was 
stored as an Anndata39 layer.

CAST Mark algorithm
Given a sample with M cells, the corresponding dataset is composed 
of each cell’s spatial coordinates Ψ ∈ ℝ

M×2 (x and y coordinates) and 
the feature expression matrix X ∈ ℝ

M×N (N indicates the feature dimen-
sion, for example gene expression panel size). For each tissue sample, 
we first constructed the tissue graph by performing Delaunay triangula-
tion using the spatial coordinates, resulting in an adjacency matrix 
A ∈ ℝ

M×M.
The CAST Mark GNN is composed of L GCNII layers16 after an 

optional single-layer perceptron encoder. The perceptron encoder 
serves as an option to reduce feature dimension and thus reduces the 
demand for computational resources without large compromise in 
performance. For each layer l (l = 1, 2,… , L − 1)

,

H
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Where σ (⋅) is a nonlinear activation function (by default, ReLU). Â is the 
adjacency matrix with self-loops, D is its diagonal degree matrix. H(0) 
is the initial node features (for example gene expression for each cell), 
while H(l) is the feature for layer l. α

l

 and β
l

 are hyperparameters for 
which we used their default values in the DGL package40.

We utilized a self-supervised CCA learning objective41 to train the 
network, where for each sample, we first applied random node feature 
masks and random edge masks to the initial graph G to generate two 
augmented views of G: G
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= (
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X

1
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˜
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), providing a mechanism 
to tolerate the intrinsic and sample-level stochasticity of gene expres-
sion and spatial locations of cells at microscopic scales. The CAST Mark 
GNN ε

θ

 is subsequently employed in parallel to create node embeddings 
for the two augmented views: H
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). Then 
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 by
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where µ is the mean value of each feature in the given matrix, σ  indicates 
the s.d. of the values in each feature and M is the number of cells. The 
normalized ˜H

1

 and ˜H
2

 are used for the CCA-based self-learning objec-
tive. The objective function is:
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where the I  is the identity matrix and λ is a non-negative hyperparameter.
In this study, we used L = 9 by default. After the training process, 

the final graph embedding of the original graph G is ˜H
init

= ε

θ

(

˜

X,

˜

A)

.

Performance evaluation. We used Pearson correlation to evaluate the 
similarity of the graph embeddings. We used the ARI and the percent-
age of consistent cells between corresponding clusters to evaluate the 
clustering performance.

CAST Stack algorithm
To align the spatial coordinates of samples while preserving cell organi-
zation, CAST Stack performs alignment using a gradient-descent-based 
rigid alignment phase followed by a nonrigid alignment phase to 
achieve a proper transformation.

Rigid alignment. Affine transformation was used for rigid registration. 
CAST allows translation, rotation, scaling and reflection transforma-
tions, but disallows shear mappings. We set the initial coordinates of 
the M cells in the query sample as Ψ0

= (x

0

i

, y

0

i

) , i = 1,… ,M . For every 
optimization iteration p (p = 1,… ,P), the transformed coordinates were 
defined as Ψp

= (x

p

i

, y

p

i

)

 (Ψ = (x

i

, y

i

) refers to Ψp

= (x

p

i

, y

p

i

)

). The affine 
transformation algorithm can be written as:

Ψ = T

affine

(Ψ

0

) = AΨ

0

+ b

where Taffine is the affine transformation function taking the transforma-
tion matrix A and the translation vector b as parameters:

A = [
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sinϕ cosϕ

] [

a 0
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b = [
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]

We reshape A, b into a single five-dimensional vector θθθ containing 
the five affine transformation parameters a, d, ϕ, b

1
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Consequently, the affine transformation function can be formally 
noted as T

affine

(Ψ

0

;θ

θ

θ).
To automatically find a proper transformation, GD was performed 

to optimize the affine transformation parameter vector θθθ.
The loss function J is identified as the sum of the adjusted Pearson 

distance Ji between each query cell i and its nearest reference cell:

J =

M

∑

i=1

J

i

We first calculated the Pearson correlation matrix between query 
and reference samples using the CAST Mark graph embedding. ri is the 
Pearson correlation value between each query cell i and its nearest 
reference cell. To ensure the Pearson distance has a minimum value of 
zero, we subtract the ri from the maximum value of the Pearson corre-
lation matrix, thereby obtaining the adjusted Pearson distance value.
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where α is a weighting parameter of the GD. The ∂J

∂Ψ

i

 is the partial deriva-
tive of the J with respect to coordinate variable 
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Non-rigid alignment. The FFD based on the B-spline method is used 
for the deformable transformation42. To define a spline-based FFD, 
we first generated a mesh grid for the spatial slice. Given the number 
of the control points s in each dimension, the mesh spacings gx and gy 
are calculated by:

g
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x
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m

y

s − 1

where m
x

 and m
y

 represent the maximum coordinate of the slice.  
Ω indicates s × s control points ω

i, j

 in the mesh grid with spacing gx,  
gy, respectively. All the cells (M cells) in a given query sample  
before B-spline alignment are identified as Ψ
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} ,h = 1,… ,M . Similarly, the B-spline trans formed 
coordinates are 
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). 
The B-spline transformation matrix TB-spline for each control point is 
written as:
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 and where Bl 
and Bm represents the l-th and m-th basis function of the B-spline, 
respectively:
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Similarly, the formula of the GD-based FFD is written as:
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where α is a weighting parameter of the GD. ∂J
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 is the partial derivative 
of the J with respect to coordinate variable Ψ
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CAST Projection algorithm
We assume that a given cell will be the most similar to the cells with 
close distance in physical space and low-dimensional feature space. 
Thus, to project the features of the cells into a low-dimensional space, 
CAST Projection employs a sequential combination of Combat30 and 
Harmony31 integration for samples with different modalities. Cosine 
distance is used to measure the similarity of cell features in the inte-
grated embedding. To find the candidate cells for a given reference 
cell, CAST first identifies the candidate query cells within a radius of 
the reference cell. As different cell types exhibit varying cell distances 
in the space, CAST calculates the cell-type-specific cell average dis-
tance based on the Delaunay triangulation graph. By default, twice 
the averaged distance is utilized (in AD samples, 1.5 × cell distance is 
used, while in RIBOmap-STARmap, 3 × the distance is used). Among the 
candidate query cells, CAST identifies the cell with the closest cosine 
distance to project.

Simulation datasets
To generate a dataset with ground-truth cell partners across samples, 
we took S1 from the STARmap PLUS AD dataset as our reference and 
generated one simulated sample based on S1, where each cell in the 
synthetic sample corresponded to a ground-truth partner in the S1 
sample. The simulated sample was generated by the following steps:

 1. Physical location noise (nonlinear): Gaussian Process Warp43 
was used to perturb the spatial coordinates of the reference 
sample using the following parameters: noise_variance = 1 × 105; 
kernel_variance = 1 × 105; kernel_lengthscale = 1.0; mean_
slope = 1.0; and mean_intercept = 0.1.

 2. Global spatial coordinates distortion (linear): the tissue sample 
was further changed by scaling and rotation transformations (x 
axis, 40%; y axis, 50%; and rotation, 30°)

 3. Gene expression noise: we applied Gaussian noise (µ = 0, 
σ = 0.2) to the log2_norm1e4 gene expression matrix.

 4. Gene feature dropout: we randomly replaced 10% of the values 
in the expression matrix using zeros.

 5. Cell dropout: we randomly dropped 10% of cells in the simulated 
sample, making sure that the graph structures would be altered.

The numbers of samples per box in Fig. 2b are 79,749, 788,629, 
1,736,756, 1,736,756, 4,341,890, 8,683,780, 8,683,780, 8,692,641, 
8,683,780, 8,683,780, 8,692,641, 8,683,780, 8,683,780 and 8,692,641 
for percentile groups 0.1, 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 
100, respectively.

Region marker gene detection
We calculated the average gene expression (log2_norm1e4) in each 
region, which represents the gene expression abundance. Then, 
z-scores of these averaged values were calculated across all regions to 
quantify the degree to which expression levels vary across different 
regions21. By considering these two features and comparing them with 
the databases17, we identified the region marker genes (Supplementary 
Table 3) with help from the experts.
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Querying tissue locations in spatial brain atlases using the 
‘search-and-match’ strategy
We utilized the STARmap S1 sample, a subset of mouse coronal brain 
section that mainly contains the hippocampus region, to query against 
a comprehensive molecular spatial atlas of the mouse CNS21. The query 
was conducted following a two-step process. In the first step, we per-
formed a coarse search against all candidate slices of all depths in the 
spatial atlas using only affine transformation to identify slices from 
the reference dataset with tissue location similarities. We assessed 
possible matching tissue locations using the CAST Stack loss values. 
We identified three hit slices in the reference atlas with significantly 
lower loss. In the second step, we performed a high-resolution align-
ment using the full CAST Stack (both affine and B-spline) for the query 
slice against the three hit slices. The reference slice with the lowest loss 
was determined to be the best match.

Delta-sample analysis
∆Analysis was used to discover the variance driven by spatial differ-
ences across conditions. With the well-aligned samples, given one 
neighborhood (niche), we could get the cells and their molecular char-
acteristics in this neighborhood with different conditions. For each 
cell, we defined a neighborhood as all the neighboring cells within a 
default 50-µm radius from its center. By comparing the associated 
neighborhoods of aligned samples, we obtained delta statistics for 
molecular features such as gene expression and cell type abundance 
at a local resolution on the global tissue slice. After screening all cells 
in the sample, we obtained a global spatial gradient map of the differ-
ences in molecular features between conditions. In this study, we used 
these molecular features in each neighborhood:

Cell type abundance. This means the cell counts of a certain cell type. 
The ∆Cell is the difference of the cell type abundance in each compari-
son. For example, for one of the combinations (S8–S3) in the 13- 
month comparison, ΔCell

i

(Oligo) = Cell

c

1

(Oligo) − Cell

c

2

(Oligo), where  
Cell

c

1

(Oligo) is the abundance of the oligodendrocytes in the disease 
sample S8, while Cell

c

2

(Oligo) is the abundance of the oligodendrocytes 
in the control sample S3. The strategy was applied for gene expression, 
CCAs and CCIs.

Gene expression. ∆Exp is the difference of the average gene expres-
sion (log2_norm1e4) in each comparison. The spatial amyloid 
plaque-induced genes (PIGs) are identified by the following criteria: 
(1) ∆Exp > 0.1; (2) the spatial correlation (Pearson r) between the ∆Exp 
and plaque score is greater than 0.1; and (3) the false discovery rate 
values of the Wilcoxon rank sum test for the differential expression 
analysis is <0.1.

Cell–cell adjacencies. ∆CCA is defined as the difference of the CCA 
value of the given cell type pairs. The CCA value between cell type A and 
B is defined as the number of A–B edges within a two-hop neighborhood 
on the Delaunay tissue graph.

Cell–cell interactions. ∆CCI is defined as the difference of the CCI 
degree of a ligand–receptor pair in each comparison derived as in 
CellPhoneDB44. The CCI degree is calculated by Squidpy (v.1.2.2)45 with 
the normalized counts (norm1e4).

Plaque score. This is the sum of the plaque area in each niche. We fil-
tered plaques with the area less than 300 pixels (~30 µm2) in the image.

Tau score (value). This is the sum of the tau rate in the cells. The tau rate 
is defined as the ratio between the tau area and the cell area in each cell.

To interrogate the spatially resolved molecular differences among 
different age groups, we used two comparisons: 8-month disease and 
control (8 months), 13-month disease and control (13 months; Fig. 4a).

Hot-zone visualization. The contour map visualization was adopted to 
visualize the spatial gradients of ∆Analysis features and highlight the 
loci with locally enriched differences across conditions in an unsuper-
vised, label-free way. For a given ∆Analysis feature, radial basis function 
interpolation was used to generate the contour lines (Rbf function in 
the SciPy package and contour function in the matplotlib package). 
The hot-zones were defined as the loci surrounded by the contours 
(by default, the top 20% percentile contour).

scRTE analysis
To measure the translation efficiency among cells regardless of the 
different expression distributions due to the different technologies or 
samples, we introduced the scRTE metric for each cell as the following 
formula (scTE represents single cell translation efficiency):

scTE

i, j

= log

2

(

RIBO

i, j

STAR

i, j

)

scRTE

i, j

=

scTE

i, j

− μ

i

σ

i

where RIBOi,j and STARi,j are the RIBOmap and STARmap normalized 
counts (norm1e4) of the gene i in cell j. The μ

i

 and σ
i

 are the average 
value and s.d. of the scTEi,j of the gene i across all cells. The scRTEi,j is 
the z-score of the scTEi,j over all cells.

Once we calculate the scRTE values of each cell in a given gene, 
scRTE levels at different locations may not be consistent. To detect the 
spatial variability of the scRTE levels in each gene, we used the s.d. of 
the scRTE values of each gene to measure the degree of heterogeneity 
for each gene. Meanwhile, the Kruskal–Wallis test was used to evaluate 
whether the scRTE levels are significantly different between the cell 
types or regions. As the STARmap sample in Mouse 2 is truncated at 
the hypothalamus, cortical subplate and olfactory cortical regions, 
our analysis focuses solely on the overlapping region within the Mouse 
2 sample.

Although scRTE is not the absolute ratio of ribosome-bound RNA 
versus the total RNA as RIBOmap and STARmap were measured from 
two different samples using different technologies, it reflects the rank 
of relative translational levels compared to other cells in the dataset. 
We reason that scRTE is a more robust metric across samples while 
reflecting spatial heterogeneity of translation efficiency.

Region segmentation of mouse half-brain datasets
We first performed CAST Mark training on the normalized expression 
(norm1e4) with Combat batch correction30 of 1,082 highly variable 
genes across all four half-brain samples. We then performed k-means 
(k = 20) clustering on the CAST Mark graph embedding. Among the 
20 clusters, we selected the most under-segmented cluster (region 3) 
and further subclustered region 3 into 10 subclusters, yielding a total 
of 29 clusters. We then visually examined all 29 regions. Using the Allen 
Brain Atlas17,18 as the reference, we merged over-segmented regions 
consistent with established brain anatomy. We also separated physi-
cally segregated areas belonging to the same k-means cluster into two 
regions (HY, hypothalamus and LH, lateral habenula). Consequently, 
we confirmed a total of 23 brain subregions. Finally, we concluded 
these 23 brain subregions into 10 top-level brain regions based on the 
Allen Brain Atlas.

Gene clustering
The gene expression (log2_norm1e4) of the four samples were first 
averaged across the cell types within each sample, respectively. Sub-
sequently, the average expression values were standardized by cal-
culating the z-score within each sample. Eight hundred eighty-four 
highly abundant genes with sufficient expression and scRTE values 
in each sample were used in this analysis. The standardized vectors 
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for RIBOmap and STARmap were jointly clustered with the Louvain 
algorithms from Seurat (v.4.0.3). We then used ComplexHeatmap 
(v.2.10.0) to visualize the clusters. For the gene clustering based spatial 
pattern (∆Exp spatial pattern), the Pearson correlation matrix between 
the genes was first calculated. Then the matrix was used for Leiden 
clustering (Scanpy46, v.1.9.1).

Enrichment analysis
To identify the enriched GO and KEGG pathway terms, gprofiler2 
(v.0.2.1) was applied for the enrichment analysis. The enriched terms 
were further visualized by the EnrichmentMap plugin in Cytoscape 
(v.3.9.1). For visualization, clusters containing fewer than five nodes were 
excluded. For the spatially resolved PIGs, the GO and KEGG pathway 
enrichment analyses were conducted with clusterProfiler (v.3.18.1)47.

Benchmark with PASTE alignment
We used the pairwise_align (GPU mode) and center_align (CPU mode; 
not available in GPU mode) in PASTE to run the alignment tasks of dif-
ferent samples with default parameters. The NVIDIA RTX A5000 (24 GB 
VRAM) GPU was used in the task. We only presented the available results 
for the eight AD sample and Visium datasets (Supplementary Fig. 6), 
as PASTE was unable to execute the half-brain alignment tasks due to 
memory limitations (limited to CPU 80 GB RAM).

For the Visium dataset, we set min_counts = 15 in the function 
sc.pp.filter_genes and min_counts = 100 in the function sc.pp.filter_
cells to filter the low-expressed genes and voxels. The reference slice 
was Visium1 (Mouse Brain Coronal Section 1) and the query slice was 
Visium2 (Mouse Brain Coronal Section 2). Raw expression data was 
used. Default values of parameter numItermax and α were used for the 
function pairwise_align.

For the eight AD sample dataset, we set min_counts = 200 in the 
function sc.pp.filter_cells to filter the low-expressed genes. The raw 
expression data was used. Default values of parameters were used for 
the function pairwise_align and center_align. In pairwise alignment 
tasks, S1 was used as the reference slice and other slices were used as 
the query slices.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The RIBOmap and STARmap datasets are available from (RIBOmap_
mouse1, STARmap_mouse1 and RIBOmap_mouse2) https://singlecell.
broadinstitute.org/single_cell/study/SCP1835 and (STARmap_mouse2) 
https://singlecell.broadinstitute.org/single_cell/study/SCP2203). 
The AD STARmap PLUS datasets (S1–S8, S64_1 and S64_2) are publicly 
available at https://singlecell.broadinstitute.org/single_cell/study/
SCP1375/. The mouse brain atlas dataset used is available at https://sin-
glecell.broadinstitute.org/single_cell/study/SCP1830. The two Visium 
datasets (Mouse Brain Coronal Section 1 (FFPE) and Mouse Brain Coro-
nal Section 2 (FFPE)) are available from https://www.10xgenomics.com/
resources/datasets/mouse-brain-coronal-section-1-ffpe-2-standard 
and https: //w w w. 10xgenomic s.com/resources/d at aset s /
mouse-brain-coronal-section-2-ffpe-2-standard. The MERFISH dataset 
(co1_slice37 in co1_sample13) is available from https://doi.brainimageli-
brary.org/doi/10.35077/act-bag. The Slide-seq dataset (slice042) is 
available from https://docs.braincelldata.org/downloads/index.html. 
The two Stereo-seq MOSTA datasets (E16.5_E2S5 and E16.5_E2S6) are 
available from https://db.cngb.org/stomics/mosta/download/.

Code availability
The code and demos of CAST have been deposited to GitHub at (https://
github.com/wanglab-broad/CAST) and Zenodo (https://zenodo.org/
doi/10.5281/zenodo.12215314 (ref. 48)). The implementation of CAST, 

as well as the tutorials, are available in the demo pipeline files and CAST 
document page (https://cast-tutorial.readthedocs.io/en/latest/).
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