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Integrative in situ mapping of single-cell 
transcriptional states and tissue 
histopathology in a mouse model of 
Alzheimer’s disease
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Jingyi Ren1,2, Albert Liu2, Zefang Tang1,2, Hao Sheng    5, Jia Liu    5, 
Morgan Sheng    1,4,6  & Xiao Wang    1,2,4 

Complex diseases are characterized by spatiotemporal cellular and 
molecular changes that may be difficult to comprehensively capture. 
However, understanding the spatiotemporal dynamics underlying 
pathology can shed light on disease mechanisms and progression. Here we 
introduce STARmap PLUS, a method that combines high-resolution spatial 
transcriptomics with protein detection in the same tissue section. As proof 
of principle, we analyze brain tissues of a mouse model of Alzheimer’s 
disease at 8 and 13 months of age. Our approach provides a comprehensive 
cellular map of disease progression. It reveals a core–shell structure 
where disease-associated microglia (DAM) closely contact amyloid-β 
plaques, whereas disease-associated astrocyte-like (DAA-like) cells and 
oligodendrocyte precursor cells (OPCs) are enriched in the outer shells 
surrounding the plaque-DAM complex. Hyperphosphorylated tau emerges 
mainly in excitatory neurons in the CA1 region and correlates with the local 
enrichment of oligodendrocyte subtypes. The STARmap PLUS method 
bridges single-cell gene expression profiles with tissue histopathology 
at subcellular resolution, providing a tool to pinpoint the molecular and 
cellular changes underlying pathology.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder 
and the most common cause of dementia in the elderly1. Widespread 
deposition of extracellular amyloid-β (Aβ) plaques and intracellular 
neurofibrillary tangles (hyperphosphorylated tau deposits), especially 
in the neocortex and hippocampus, are the neuropathologic hallmarks 

of AD1–4. In addition, AD pathology is characterized by reactive changes 
of microglia and astrocytes and white matter abnormalities5–7. A key 
question in AD research is how these histopathological hallmarks are 
correlated with molecular disturbances that drive neurodegeneration 
across different cell populations.
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By mapping a targeted list of 2,766 genes, we created a high-resolution 
spatial cell atlas of 8- and 13-month-old TauPS2APP mouse brains in the 
context of extracellular Aβ plaques and intracellular hyperphospho-
rylated tau accumulation. Single-cell spatial transcriptomic analysis 
identified disease-associated gene pathways across diverse cell types 
in the cortical and hippocampal regions of the TauPS2APP model in 
comparison with control samples. Integrating the spatial maps of 
diverse cell types and states at different disease stages, we propose 
a comprehensive spatiotemporal model of AD disease progression. 
These studies provide important tools and resources for mechanistic 
understandings of AD and other neurodegenerative diseases at cellular 
and molecular levels.

Results
Method development of STARmap PLUS
The original STARmap method is incompatible with histological stain-
ing (immunostaining or chemical staining) and limited to detecting 
1,024 genes34. To overcome such limitations, in STARmap PLUS, we 
developed the experimental protocol to incorporate antibody staining 
(in this study, AT8 antibody, detecting hyperphosphorylated tau) and 
dye staining (X-34, detecting Aβ plaque) into the library preparation 
and in situ sequencing steps (Fig. 1a,b and Extended Data Fig. 1a,b). In 
brief, STARmap PLUS entails the following steps: (1) mRNAs within fixed 
brain sections are detected by a pair of SNAIL (specific amplification 
of nucleic acids via intramolecular ligation) probes (Fig.1b), and enzy-
matically amplified as cDNA amplicons; (2) specific proteins of interest 
are labeled with primary antibody; (3) the cDNA amplicons, primary 
antibodies and endogenous proteins (for example, plaques and tau) 
are chemically modified and copolymerized in a hydrogel matrix; (4) 
each cDNA amplicon contains a gene-unique identifier (barcode) that 
is readout through in situ sequencing with error reduction by dynamic 
annealing and ligation (SEDAL); (5) fluorescent secondary antibody 
and small-molecule dye X-34 are then applied to visualize specific 
proteins and their localization. Besides protein labeling capability, 
we expanded the gene-coding barcode in the DNA probes from 5 to 
10 nucleotides (resulting in 106 coding capacity for STARmap PLUS) 
that is sufficient to encode more than 20,000 genes (Fig. 1b). Notably, 
the tissue structure and histopathological morphology were well pre-
served after STARmap PLUS (Extended Data Fig. 1c,d). Furthermore, 
STARmap PLUS has superior detection efficiency in comparison with 
previously reported in situ sequencing methods37,41 (Extended Data Fig. 
1e–h). In addition, STARmap PLUS is capable of detecting mRNAs and 
proteins in the same samples and has a much higher spatial resolution 
(95 × 95 × 350 nm voxel size) in comparison with chip-based spatial 
transcriptomics method (100 μm pixel size) that has been used previ-
ously in AD study38.

We applied STARmap PLUS to investigate how AD-related pathol-
ogy, particularly amyloid deposits and hyperphosphorylated tau, 
influences brain cell states at the transcriptomic level at subcellu-
lar resolution in intact brain tissue in which the spatial relationships 
between protein pathology, cell body location and mRNA changes are 

Conventional experimental approaches have limitations in uncov-
ering the molecular and cellular complexity of AD as follows: bulk-tissue 
analyses mask the heterogeneity of cell populations in the brain, and 
standard imaging methods visualize only a few genes/proteins and 
access limited cell types. The recent application of single-cell RNA 
sequencing (scRNA-seq) to AD brain tissue has been transformative, 
revealing substantial and heterogeneous changes of gene expression 
in major brain cell types in patients and mouse models8–13. A subpopu-
lation of microglia with a distinctive transcriptomic state (termed 
disease-associated microglia or DAM) was identified by bulk and 
scRNA-seq studies in mouse models of AD and other neurodegenerative 
disorders10,14–19. Besides DAM microglia, there are also reactive astro-
cytes, such as disease-associated astrocytes (DAA), with characteristic 
gene signatures in AD patients and mouse models, suggesting a major 
transcriptional response in AD by multiple cell types9,20–25.

However, there are major limitations of scRNA-seq methods: they 
cannot preserve the spatial pattern of individual cells, or their spatial 
relationships to localized tissue pathology, and the isolation of single 
cells or single nuclei from the brain tissue can introduce significant bias 
in cellular representation and artifactual changes in gene expression, 
especially for microglia26–29. Therefore, an advanced technology plat-
form capable of integrating spatially resolved single-cell transcriptom-
ics with histology and immunostaining in intact tissue is needed to fully 
understand the scope and heterogeneity of diverse cellular responses 
to amyloid plaque, tau aggregation, cell death and synapse loss and 
to investigate the spatial relationships between the above-localized 
pathologies and cellular responses.

Spatially resolved transcriptomic technologies are capable of 
mapping transcriptomic profiles within tissue architecture30–37, but 
many existing ones are incompatible with protein detection in the 
same tissue sections or limited by spatial resolution and/or gene cover-
age. For example, a recent study uncovered amyloid plaque-induced 
genes (PIGs) using spatial transcriptomics with fluorescent staining of 
adjacent brain sections to correlate the positions of plaques with local 
gene expression38. However, the resolution was limited to 100 μm and 
only a small set of genes were examined at cellular resolution.

We previously developed an image-based in situ RNA sequenc-
ing method called STARmap (spatially resolved transcript amplicon 
readout mapping) for single-cell transcriptional state profiling in 
three-dimensional (3D) intact brain tissues34. Here we introduce STAR-
map with protein localization and unlimited sequencing (STARmap 
PLUS), enabling simultaneous high-resolution spatial transcriptomics 
concomitantly with specific protein localization in the same tissue sec-
tion. In this study, we employed STARmap PLUS to draw a comprehen-
sive transcriptomic atlas of AD at a voxel size of 95 × 95 × 350 nm across 
all brain cell types during the development of amyloid plaque and tau 
pathology, using TauPS2APP triple transgenic mice, an established AD 
mouse model that exhibits both amyloid plaque and tau pathologies 
(Fig. 1a). TauPS2APP mice express mutant forms of hPresenilin 2 (PS2), 
hAPP and h-tau, showing age-related brain amyloid deposition, tauopa-
thy, neuroinflammation, neurodegeneration and cognitive deficits39,40. 

Fig. 1 | Simultaneous mapping of cell types, single-cell transcriptional states 
and tissue histopathology by STARmap PLUS. a, Overview of STARmap PLUS, 
an integrative in situ method, capable of simultaneously mapping thousands 
of RNA species and protein disease markers in the same intact 3D tissue at 
subcellular resolution. b, Schematics of STARmap PLUS. After the brain tissue 
is retrieved and fixed, the intracellular mRNAs are targeted by a pair of SNAIL 
(specific amplification of nucleic acids via intramolecular ligation) probes, 
which are then enzymatically ligated and amplified to generate amine-modified 
cDNA amplicons in situ. Meanwhile, protein markers are labeled with primary 
antibodies. Next, tissues with amine-modified cDNA amplicons, proteins and 
primary antibodies are modified by acrylic acid N-hydroxysuccinimide ester 
(AA-NHS) and copolymerized with acrylamide to generate a hydrogel-tissue 
hybrid that fixes the locations of biomolecules for in situ mapping. Each cDNA 
amplicon contains a gene-specific identifier sequence (orange) that can be 

readout through in situ sequencing with error reduction by dynamic annealing 
and ligation (SEDAL). Lastly, fluorescent protein stainings (secondary antibody 
and small-molecule dye X-34 stainings) were applied to visualize protein signals. 
c, Representative images showing the simultaneous mapping of cell nuclei, cDNA 
amplicons and protein signals in the brain slice from a 13-month-old TauPS2APP 
mouse. Left: The 3D projection of the raw confocal fluorescence image of the 
CA1 region of the hippocampus. Middle: A zoom-in view of the dashed box in 
the left panel, which shows the last cycle of tissue histopathology imaging that 
detects both protein and cDNA amplicon: red, immunofluorescent staining of 
p-tau; white, X-34 staining of Aβ plaque; green, fluorescent DNA probe staining 
of all cDNA amplicons; and blue, PI staining of cell nuclei. Right: eight cycles of 
in situ RNA sequencing of the view in the middle panel; each color represents a 
fluorescent channel in one round of in situ sequencing.
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precisely maintained and readily measured. A curated list of 2,766 genes 
was extracted from previous bulk and single-cell RNA-seq studies and 
various AD-related databases (Supplementary Table 1)8,9,12,13,42–47. We 
performed eight rounds of in situ sequencing to map RNAs and one 
round of postsequencing imaging to locate Aβ plaques and hyperphos-
phorylated tau (p-tau) in coronal sections of the brains from TauPS2APP 
mice and control mice (Fig. 1c and Extended Data Fig. 2a).

Transgenic TauPS2APP mice develop progressive amyloid plaques 
starting at ~4.5 months of age, growing exponentially from 6 months 
to 8 months of age, and rising steadily from 9 months of age. Neu-
ronal damage, measured by disintegrative staining or volumetric MRI, 
becomes apparent by 9 months39,40. Thus, brain sections were collected 
and analyzed at 8 months (when tau and Aβ pathology have set and are 
expanding) and 13 months (a more advanced disease stage with severe 
pathology and highly elevated neuroinflammatory activity)40. We 
focused our spatial transcriptomic analysis on the retrosplenial cortex 
(RSP), the secondary motor cortex (MOs), the primary motor cortex 
(MOp), the primary somatosensory cortex (SSp) and the hippocampus. 
These regions contain plentiful plaques and are thus amenable to this 
kind of spatial analysis relative to plaque location. STARmap PLUS 
revealed that Aβ plaques were prominent in cortex and hippocampus, 
whereas AT8 p-tau immunoreactivity was strongest in the CA1 region of 
the hippocampus (Fig. 1c and Extended Data Fig. 2a), which is consist-
ent with previous reports39,40. A total of 38,788 cells from four TauP-
S2APP mice and 38,059 cells from four control mice (nontransgenic 
littermates) were imaged at a voxel size of 95 × 95 × 350 nm (Fig. 1a). 
After projecting 3D RNA reads to two-dimensional (2D) planes, seg-
menting cells and filtering single-cell transcriptional profiles by quality 
control criteria (Extended Data Fig. 2b; Methods), the remaining 72,165 
cells pooled from all eight samples were subjected to downstream 
analysis (Extended Data Fig. 2b–g).

Hierarchical cell classification and spatial analysis
To identify cell types from the STARmap PLUS data, we adopted a hierar-
chical clustering strategy, where top-level clustering served to classify 
cells into common cell types shared by all samples, and sublevel clus-
tering served to further identify disease-associated subtypes. During 
top-level clustering, the Leiden algorithm was applied to the k-Nearest 
Neighbors (kNN) graph constructed with the single-cell transcriptomic 
profiles after dimensionality reduction using principal component 
analysis (PCA). We identified 13 major clusters and annotated the cell 
types according to their spatial distribution and previously reported 
gene markers44,45,47(Fig. 2a and Extended Data Fig. 3a). For example, 
excitatory neurons were annotated by their high expression levels of 
genes related to ion channels and synaptic signaling, such as Vsnl1, 
Snap25 and Dnm1. Inhibitory neurons were separated by their enrich-
ment of γ-aminobutyric acid transporter Slc6a1. Other non-neuronal 
cell-type-specific markers such as Aldoc for astrocyte, Bsg for endothe-
lial cell, Ctss for microglia and Plp1 for oligodendrocyte were used to 
annotate corresponding clusters (Extended Data Fig. 3a,b). The uniform 
manifold approximation and projection (UMAP) plots of TauPS2APP 

samples showed differential distribution of cells within the astrocyte, 
microglia and oligodendrocyte clusters in comparison with controls, 
suggesting possible disease-associated cell subtypes (Fig. 2a and 
Extended Data Fig. 3c). Thus, we further investigated the transcriptomic 
heterogeneity within each major cell type, which further identified 33 
sublevel clusters based on their transcriptomic signatures (Fig. 2b).

Because spatial information of RNAs was preserved at subcel-
lular resolution, we were able to generate a high-resolution spatial 
cell atlas of the cortex and hippocampus in conjunction with pre-
cise localization of AD-related histopathology (Fig. 2c and Extended 
Data Fig. 3d). In TauPS2APP mice, the percentage of plaque area in 
the whole tissue rose from 0.31% (187 Aβ plaques identified with an 
average size of 129 ± 89 μm2) in 8-month mouse brains to 0.74% (328 
plaques identified with an average size of 181 ± 141 μm2) in 13-month 
mouse brains. Meanwhile, no plaques were visible in nontransgenic 
controls (Extended Data Figs. 2a and 3d). p-tau signal was observed 
mostly in the hippocampal region of the TauPS2APP mice at 8 months 
and became more pronounced at 13 months in both hippocampal and 
cortical regions (Fig. 2c and Extended Data Fig. 3d).

To assess how cell distributions and cell states are affected by the 
nearby presence of amyloid plaque and tauopathy, we first analyzed the 
cell distributions and states in the cortex and hippocampus separately. 
Next, to quantify cell type distribution in the spatial relationship to Aβ 
plaque, we calculated the density of different cell types within the first 
five 10 μm intervals surrounding plaques (0–50 μm; Fig. 2d; Methods). 
Among the 13 major cell types, microglia, astrocytes, oligodendrocytes, 
oligodendrocyte precursor cells (OPC) and endothelial cells showed 
relative enrichment in the vicinity of plaques in comparison with the 
overall density of that cell type in the cortex and hippocampus in TauP-
S2APP mice (Fig. 2e and Extended Data Fig. 3e,f). As expected, the most 
striking change was detected in microglia: they were by far the most 
prevalent cell type in the 10 μm ring around the plaque (Fig. 2e), where 
they were markedly concentrated compared with the normal density 
in that brain region and often seemed to be in direct contact with the 
plaques. Compared with their overall normal density, microglia were 
also more concentrated in the 10–20 μm annulus around plaques, 
although to a lesser degree than within 10 μm distance of plaque (Fig. 
2e). The accumulation of microglia around plaque uncovered here 
by spatial transcriptomics is consistent with previous studies14,15,17, 
but more detailed and unbiased, thus further validating the utility of 
STARmap PLUS. Astrocytes, oligodendrocytes, OPC and endothelial 
cells showed modest but significant enrichment at the 10–30 μm dis-
tance compared to their overall average density but were depleted in 
the immediate neighborhood of plaques (<10 μm). Both excitatory 
and inhibitory neurons were also depleted within 10 μm around Aβ 
plaques in comparison with the overall density of these neuron types 
(Fig. 2e and Supplementary Table 2).

p-tau (AT8) immunoreactivity was more finely dispersed in neu-
ronal cell bodies and axon bundles. To investigate the spatial cor-
relation of p-tau intensity with different cell types, we divided the 
spatial atlas into blocks of 20 μm-spaced grids (Fig. 2f) and analyzed 

Fig. 2 | Top-level cell type classification and spatial analysis in the brain 
slices of TauPS2APP and control mice. a, UMAP plots showing 13 major cell 
types identified in the transcriptional profiles of 72,165 cells collected from 
eight coronal brain sections of TauPS2APP and control mice at 8 and 13 months. 
b, Hierarchical taxonomy dendrogram showing two levels annotation of the 13 
top-level clusters and 33 sublevel clusters (subclusters). Cell type annotation was 
assigned to each cluster according to its representative gene markers compared 
to the rest of the cells. c, Representative spatial cell type atlas with Aβ and tau 
pathologies in cortical and hippocampal regions of TauPS2APP 13-month sample 
(n = 2 independent animals). The imaging area was separated into the cortex, 
corpus callosum (cc) and hippocampus manually with expert annotation, and 
the boundaries were marked by black dash lines. Zoom-in sections in the cortical 
region and the hippocampal region with p-tau protein signal. d, A Schematic 
illustrating the spatial patterns analysis of cell type compositions around the 

Aβ plaque. Scale bar, 50 μm. e, Representative spatial distribution of cell type 
compositions around Aβ plaque for TauPS2APP 13-month samples. Stacked bar 
plot showing the density (cell count per mm2) of each major cell type at different 
distance intervals (0–10, 10–20, 20–30, 30–40 and 40–50 μm) to the Aβ plaque. 
The cell density of each major cell type in each area was included as the reference 
for comparison. Asterisks denote significantly enriched cell types in each 
distance interval. One-sided one-sample t-test, *P < 0.05, **P < 0.01, ****P < 0.0001 
versus overall cell density. f, Schematics illustrating the method used for p-tau 
signal quantification. g, Cell type composition analysis based on the 20 × 20 μm 
grid in the TauPS2APP samples at 13 months ranked by p-tau density. Stacked 
bar plot showing the average number of cells per block for each major cell type. 
Asterisks denote significantly enriched cell types in each p-tau density bin 
compared to the zero p-tau bin. One-sided one-sample t-test, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 versus zero p-tau bin.
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the covariation of cell type composition versus p-tau density within 
these 20 μm squares. Oligodendrocytes were found most substantially 
enriched in the blocks with high p-tau, even where there was no amyloid 
plaque (Fig. 2g).

The top-level cell clustering and spatial RNA analyses revealed 
that microglia, astrocytes, OPCs, oligodendrocytes and neuronal cells 
showed the biggest changes in their transcriptional profiles, spatial 
distributions or both. These cell types were thus selected for in-depth 
subclustering analyses to pinpoint disease-associated subtypes, cell 
states and gene pathways in the following sections (Figs. 2b and 3–6).

DAMs directly contact Aβ plaques from earlier disease stage
We first investigated the heterogeneity within the microglia population 
by subclustering analysis of transcriptomic profiles. Three subpopu-
lations were identified and categorized as Micro1 (52%), Micro2 (21%) 
and Micro3 (27%) (Fig. 3a, Extended Data Fig. 4a and Supplementary 
Table 2). Micro1 and Micro2 subtypes were present in both TauPS2APP 
and control samples, while the Micro3 subpopulation cells were almost 
absent in controls and expanded greatly from 8 months to 13 months in 
the TauPS2APP brains (Fig. 3a and Extended Data Fig. 4a). Micro1 and 
Micro2 both express the marker P2ry12 and may correspond to subtypes 
of homeostatic microglia10: Relative to Micro1, Micro2 shows upregula-
tion of Tgfbr1 and Gpr34. The Micro3 subtype expressed high levels of 
Cst7, Ctsb, Trem2 and Apoe, which are characteristic of DAM and associ-
ated with neurodegeneration10 (Fig. 3b). Furthermore, we performed 
single-cell transcriptomic data integration with previously published 
scRNA-seq studies of human AD patients12. The Micro3 cluster had the 
best correspondence to the AD pathology-associated microglia subpopu-
lation (Mic1) from human AD patient samples (Extended Data Fig. 4b,c). 
Given their strong association with plaques in the TauPS2APP disease 
model and expression of known DAM gene markers, we believe that 
the Micro3 population defined in STARmap PLUS is equivalent to DAM 
previously described in single-nucleus RNA-seq (snRNA-seq) studies10,16.

It is noteworthy that clustering analysis effectively identifies dis-
tinct cell subtypes but does not capture well multistep cell state transi-
tions. To uncover cell state transitions during disease progression and 
determine the relationship among different subtypes, we deployed 
Monocle pseudotime analysis48, a widely used computational tool 
for reconstructing cell differentiation trajectory, as a complement to 
subtype analysis in the following sections. We aimed to reconstruct the 
presumptive path along which microglia alter their state by pseudotime 
trajectory analysis of the single-cell transcriptomic profiles (Fig. 3c). 
By this computational approach, the microglia population showed a 
linear pseudotime trajectory that aligned well with the actual disease 
progression timeline: microglia in control mice were enriched at the 
starting point of the trajectory while those in TauPS2APP mice shifted 
along the trajectory from 8 to 13 months (left-to-right; Fig. 3c). We then 
measured the distance from each microglia to the closest plaque in 
the same tissue section and visualized that on the diffusion map along 
with our pseudotime calculation (Fig. 3d). The correlation of distance 
from plaque with pseudotime trajectory suggests that one of the driv-
ing forces of the trajectory could be plaque-induced genes in space, 
which agrees with the fact that DAM microglia lie in closest proximity 
to plaque (Fig. 3d,e).

We then performed detailed spatial analyses of microglia subtypes 
Micro1–3. In the cortex, all three microglial subtypes showed signifi-
cant increases in overall density at both ages of TauPS2APP mice; in 
the hippocampus, the increased density of microglia was statistically 
significant only for Micro3 (Fig. 3f–i and Extended Data Fig. 4d). With 
the cell type composition analysis around Aβ plaques, we found that 
(1) Micro3 is the most predominant cell type (>70%) within the 10 μm 
ring around plaque in cortex and hippocampus at both 8 and 13 months 
age (Fig. 3i and Extended Data Fig. 4e); (2) Micro1 and Micro2 cells 
were also enriched within 10 μm distance around the plaques in both 
the cortex and hippocampus (Fig. 3i, Extended Data Fig. 4e and Sup-
plementary Table 2); (3) from 8 months to 13 months, the density of 

Fig. 3 | Spatiotemporal gene expression analysis of microglia in TauPS2APP 
and control samples. a, Diffusion map visualization of 3,732 microglia 
cells across different samples. b, Dot plot showing the expression level of 
representative gene markers among different microglia subclusters. c, Diffusion 
map with pseudotime trajectory visualization of microglia population across 
different samples generated by Monocle3 (ref. 48). Colormap represents the 
pseudotime value and the root of the trajectory was marked by the white dot. 
d, Diffusion map plots showing the distance from each microglia cell to the 
closest plaque. e, Boxplot showing the distribution of the distance from each 
microglia to the closest plaque nearby among microglia subtype populations in 
the cortex (n = 1,248) and hippocampus regions (n = 1,206 cells). Box, 75% and 
25% quantiles. Line, median. Whisker, the maxima/minima or to the median ± 1.5× 
IQR. Two-sided t-test, **P < 0.01, ****P < 0.0001. f, g, Spatial cell maps of microglia 
in the 13-month control (f) and TauPS2APP (g) samples. Insets show zoom-in 
regions (1, 2). Dashed black lines mark the boundaries between the cortex, cc and 

hippocampus. h, Boxplot showing the density of each microglia subcluster in all 
the eight sections (left), the cortex region (middle) and the hippocampus region 
(right) in control and TauPS2APP mice at two different time points. Box, 75% and 
25% quantiles. Line, median. Dots, individual samples. One-sided t-test. *P < 0.05, 
**P < 0.01. i, Stacked bar charts showing the density of each microglia subcluster 
in each distance interval centered by the Aβ plaque at 13 months. Asterisks 
denote significantly enriched microglia subtypes in each distance interval. 
One-sided one-sample t-test, *P < 0.05, **P < 0.01, ****P < 0.0001 versus overall 
cell density. j, Diffusion map showing the expression of four representative DEG 
or SDEG genes of microglia. k, Matrix plot showing the z scores of DEGs or SDEGs 
in the disease-associated gene module of microglia in each distance around the 
Aβ plaque in TauPS2APP 13-month sample. The total averaged scaled expression 
level in different distance intervals was visualized by the bars on top of the matrix 
plots. l, Gene ontology enrichment analysis (Fisher’s one-sided test) results of 
disease-associated gene module in microglia.

Fig. 4 | Spatiotemporal gene expression analysis of astrocytes in TauPS2APP 
and control samples. a, Diffusion map visualization of 6,789 astrocytes across 
samples. b, Dot plot showing the expression level of representative markers 
across different astrocyte subclusters. c, Diffusion map with pseudotime 
trajectory visualization of the astrocyte cell population across different samples 
generated by Monocle3. Colormap represents the pseudotime value and the 
root of the trajectory was marked by the white dot. d, Diffusion map showing 
the distance from each microglia cell to the closest plaque. e, Boxplot showing 
the distribution of the distance from each astrocyte to the closest plaque among 
astrocyte subtype populations in two different brain regions (n = 1,215 and 2,057 
cells). Top: cortex; bottom, hippocampus. Box, 75% and 25% quantiles. Line, 
median. Whisker, the maxima/minima or to the median ± 1.5× IQR. Two-sided 
t-test, *P < 0.05, **P < 0.01, ****P < 0.0001. f, g, Spatial cell maps of astrocyte 
population in 13-month control (f) and TauPS2APP (g) samples. Insets show  
the zoom-in (1, 2). Dashed black lines mark the boundaries between the cortex,  

cc and hippocampus. h, Boxplot showing the density of each astrocyte subcluster 
in all eight sections (left), the cortex (middle) and hippocampus region (right) 
in control and TauPS2APP mice at two different time points. Box, 75% and 25% 
quantiles. Line, median. Dots, individual samples. One-sided t-test, *P < 0.05, 
**P < 0.01. i, Stacked bar charts showing the density of astrocyte subcluster in 
each distance interval around the Aβ plaque at 13 months. Asterisks denote 
significantly enriched astrocyte subtypes in each distance interval. One-sided 
one-sample t-test, *P < 0.05, **P < 0.01 versus overall cell density. j, Diffusion  
map showing the expression of four representative top DEGs of astrocyte.  
k, Matrix plot showing the z-scores of DEGs or SDEGs in the disease-associated 
gene module of astrocyte in each distance interval around the Aβ plaque in 
TauPS2APP 13-month sample. The total averaged scaled expression level in 
different distance intervals was visualized by the bars on top of the matrix plots.  
l, Gene ontology enrichment analysis (Fisher’s one-sided test) results of  
disease-associated gene module in astrocyte.
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Micro3 increased within the 10 μm ring near plaque, whereas the local 
cell density of Micro1 and Micro2 near plaque (<10 μm) remained the 
same or fell (Fig. 3i, Extended Data Fig. 4e and Supplementary Table 2) 
and (4) Micro3 density increased also in the 10–20 μm annulus around 
plaque (Fig. 3i and Extended Data Fig. 4e). Together, the spatial analysis 
of microglia cell subtypes suggest that microglia activation strongly 
correlates with their close association with plaques (<20 μm), and the 
elevated concentration of all three subtypes around plaques suggests 
a local transition from Micro1 and Micro2 to Micro3 near plaque during 
disease progression.

To get a better understanding of microglia response to plaques 
and tau pathology at the molecular level, we analyzed differentially 
expressed genes (DEGs) of microglia along disease progression and in 
relation to plaques (Extended Data Fig. 4f and Supplementary Table 3).  
Most of the upregulated microglial DEGs identified in TauPS2APP 
mouse brains overlap with Micro3 (DAM) gene markers and coincide 
with genes that are upregulated near plaques in this study, which we 
identified as ‘spatial DEG’ (SDEG) (Fig. 3j, Extended Data Fig. 4g and Sup-
plementary Table 4); these genes are involved in biological processes 
such as regulation of cell death (that is, Ccl3, C1qa and Ctsd) and regu-
lation of cell migration (that is, Cd9, Apoe and Trem2) (Extended Data 
Fig. 4f,h). We also performed gene module analysis using single-cell 
weighted gene co-expression network analysis (scWGCNA)49. Seven 
gene modules were identified in microglia, and among them, microglia 
module 1 (MM1) showed the most significant DEG enrichment and 
upregulated gene expression in plaque-proximal regions (Extended 
Data Fig. 4i,j and Supplementary Table 5). Based on these features, we 
identified MM1 as the disease-associated module in microglia. Indeed, 
MM1 contained many DAM marker genes, such as Cst7, Trem2 and Cd63, 
and these genes were also identified as DEGs or SDEGs (Fig. 3k). The 
GO analysis showed that the MM1 module genes were involved in cell 
activation (that is, Cst7, Cd83 and Trem2) and inflammatory response 
(that is, C1qa, Apoe and Grn) (Fig. 3l).

DAAs emerge near the plaque-DAM complex at a later stage
Astrocyte was another non-neuronal cell type that showed significant 
changes in TauPS2APP versus control. Subclustering analysis of the 
astrocytes identified three transcriptionally distinct subpopulations 
Astro1 (54%), Astro2 (32%) and Astro3 (14%) (Fig. 4a, Extended Data Fig. 5a  
and Supplementary Table 2). Astro3 cells were occasionally found in 
control mice, but the Astro3 subpopulation expanded in TauPS2APP 
mice, increasing from 8 to 13 months (Fig. 4a and Extended Data Fig. 5a). 
Transcriptomic changes in Astro3 astrocytes resembled those of DAA 
previously described in AD models, characterized by upregulation of 
genes such as Gfap, Vim and Ctsb (Fig. 4b)9. To test whether this Astro3 
cell population exists in other AD datasets, we performed single-cell 
transcriptomic data integration with previously published single-cell 
RNA-seq studies of human AD patients and 5xFAD mouse model9,12 
(Extended Data Fig. 5b–h; Methods). The Astro3 cluster identified from 

STARmap PLUS spatial transcriptomic data had the best correspond-
ence to AD pathology-associated astrocyte subpopulation (Ast1) from 
human AD patient samples12 and to disease-associated astrocytes (DAA; 
cluster 4) in the 5xFAD mouse model9 (Extended Data Fig. 5e–h). Based 
on this transcriptomic similarity and their association with TauPS2APP 
mice, we annotated the Astro3 subtype as ‘DAA-like’ cell population.

The pseudotime trajectory analysis of astrocytes yielded a 
3-branched trajectory, with one side connecting Astro1 and Astro2, 
which represent two subtypes of ‘homeostatic’ astrocytes that differ 
by gene expression, and a longer branch that is associated with disease. 
Therefore, the trajectories were annotated with two starting points 
from Astro1 and Astro2, and one endpoint to Astro3 (DAA-like) (Fig. 4c). 
Similar to microglia, we further validated our annotation by visualizing 
the distance from each cell to its nearest plaque on the diffusion map 
embedding; this analysis showed gradients consistent with the pseu-
dotime values (Fig. 4d). Statistical analysis further confirmed that the 
Astro3 population on average was located closer to plaque than either 
Astro1 or Astro2 homeostasis populations (Fig. 4e).

The spatial cell map of astrocyte subtypes showed that Astro1 cells 
are preferentially located near the cell bodies of cortical and hippocam-
pal neurons, whereas Astro2 cells are more abundant in corpus callo-
sum, hippocampal neuropil layer and stratum lacunosum-moleculare 
(Fig. 4f–h and Extended Data Fig. 6a). Cell type analysis in relation to 
tissue pathology revealed that while DAM microglia closely surround 
plaque (mostly <10 μm), Astro3 (DAA-like) cells were substantially 
enriched around plaque at an intermediate distance (10–40 μm) in 
TauPS2APP mice at both 8 months and 13 months, and in both cortex 
and hippocampus (Fig. 4i, Extended Data Fig. 6b and Supplementary 
Table 2). At 8 months but not 13 months, Astro2 was also enriched 
near the plaques (10–30 μm) as the major astrocyte subtype in the 
hippocampus (Extended Data Fig. 6b and Supplementary Table 2). 
The observed shift of the astrocyte population around plaque from 
Astro2 to Astro3 from 8 to 13 months suggests that there might be a 
conversion of Astro2 to Astro3 near plaques during disease progres-
sion in the hippocampus.

The DEGs from the astrocytes of TauPS2APP versus control sam-
ples were related to GO terms glial cell differentiation and gliogenesis 
(that is, Vim, Clu and Glul) (Extended Data Fig. 6c,d and Supplemen-
tary Table 3). The gene expression profiles of top DEGs plotted on the 
pseudotime embedding showed that the expression pattern of Gfap 
and Vim correlated with the DAA-like population, whereas Srpr1 and 
Tspan7 correlated with the two homeostasis populations Astro1 and 
Astro2, respectively (Fig. 4j). Cell-type-resolved SDEG analysis around 
plaques in the 13-month TauPS2APP mice further supports the spatial 
enrichment of DAA-like cells and their gene markers near plaques, 
especially obvious in the 10–20 μm ring around plaques (Extended 
Data Fig. 6e and Supplementary Table 4). The scWGCNA identified four 
gene modules in astrocytes, of which module 3 (AM3) showed the most 
significant DEG enrichment and upregulation in near-plaque regions 

Fig. 5 | Spatiotemporal gene expression analysis of oligodendrocyte lineage 
cells in TauPS2APP and control samples. a, Diffusion map visualization of 
11,265 oligodendrocytes and 1,269 OPCs across samples. b, Dot plot showing 
the expression level of representative markers across different oligodendrocyte 
subclusters and OPC. c, Diffusion map with pseudotime trajectory visualization 
of oligodendrocyte and OPC population across different samples generated by 
Monocle3. Colormap represents the pseudotime value. The trajectory starting 
anchor was marked by the white dot and manually selected based on the OPC 
population. d, Diffusion map plots showing different types of oligodendrocytes 
identified in a along with trajectory identified in c. e,f, Spatial cell map of 
oligodendrocyte and OPC population in 13-month control (e) and TauPS2APP 
(f) samples. Insets show the zoom-in regions (1, 2). Dashed black lines mark the 
boundaries between the cortex, cc, hippocampus and alveus. g, Boxplot showing 
the density of each oligodendrocyte subcluster and OPC in all eight sections (left) 
and other separated brain regions (right) in control and TauPS2APP mice at two 
different time points. Box, 75% and 25% quantiles. Line, median. Dots, individual 

samples. One-sided t-test, *P < 0.05, **P < 0.01. h, Stacked bar charts showing the 
density of each oligodendrocyte subcluster and OPC in each distance interval 
around the Aβ plaque at 13 months. Asterisks denote significantly enriched 
oligodendrocyte subtypes and OPC in each distance interval. One-sided one-
sample t-test, *P < 0.05 versus overall cell density. i, Heatmap showing p-tau 
quantification (left) and rank (right) of each grid in TauPS2APP sample at 13 
months. j, Cell type composition analysis of oligodendrocyte lineages in relation 
to p-tau pathology. Asterisks denote significantly enriched oligodendrocyte 
subtypes and OPC in each p-tau density bin compared to the zero p-tau bin. 
One-sample t-test, *P < 0.05, ****P < 0.0001 versus zero p-tau bin. k, Cell density 
and subtype composition of oligodendrocyte and OPC in the hippocampal alveus 
region. Asterisks denote significantly enriched oligodendrocyte subtypes in the 
region of TauPS2APP samples compared to the paired control samples. Student’s 
t-test, one-sided *P < 0.05. l, Diffusion map showing the expression of four 
representative DEG or SDEG genes of oligodendrocytes.
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(Extended Data Fig. 6f,g and Supplementary Table 5); therefore, we 
identified AM3 as the disease-associated gene module in astrocyte. 
AM3 contains many DAA marker genes, such as Gfap, Vim and Clu, and 
these genes were also identified as DEG or SDEG in astrocytes (Fig. 4k). 
The GO analysis suggested that the AM3 module genes are involved 
in glial cell proliferation, regulation of amyloid fibril formation and 
regulation of tau-protein kinase activity, which suggests the disease 
relevance of this gene module (Fig. 4l).

Oligodendrocyte lineage in the vicinity of plaques and p-tau
Subclustering analysis identified four subtypes within the oligoden-
drocyte lineage (Fig. 5a,b, Extended Data Fig. 7a and Supplementary 
Table 2): Oligo1 (77%), Oligo2 (7%), Oligo3 (6%) and OPC (10%). The 
oligodendrocyte gene marker Plp1 marks all three oligodendrocyte 
subtypes (Oligo1-3), whereas differential expression of other genes 
such as Klk6 and Cldn11 marks Oligo2 and Oligo3 populations, respec-
tively (Fig. 5b). The pseudotime trajectory analysis of the combined 
population of OPC and oligodendrocyte cells recapitulated the known 
differentiation path from OPC to mature oligodendrocytes (Fig. 5c,d). 
The expression pattern of the oligodendrocyte lineage marker genes 
among the Oligo subclusters further supports the biological relevance 
of the pseudotime trajectory (Extended Data Fig. 7b).

All four oligodendrocyte subtypes were present in TauPS2APP and 
control brains (Fig. 5e–g and Extended Data Fig. 7c). Only the Oligo2 
population showed significantly elevated abundance in TauPS2APP 
mice, especially in the corpus callosum and hippocampus, in asso-
ciation with tau and amyloid pathology (Fig. 5e–g). Around amyloid 
plaques in TauPS2APP mice, OPCs were enriched in the 10–20 μm ring 
at both 8 and 13 months, accumulating to a 64–84% higher density than 
its overall density (Fig. 5e–h, Extended Data Fig. 7c,d and Supplemen-
tary Table 2). Among all oligodendrocytes, Oligo1 is the predominant 
(>70%) subtype around plaques and showed a statistically signifi-
cant enrichment around amyloid plaques at both 8 and 13 months  
(Fig. 5h, Extended Data Fig. 7d and Supplementary Table 2). At 13 
months, Oligo3 increased by 25–60% within the 20–40 μm distance 
from the plaques and was statistically significant in the 20–30 μm 
distance in the cortex of TauPS2APP mice in comparison with the 
overall density (Fig. 5h).

Given that the density of oligodendrocytes is positively correlated 
with the density of p-tau, independently of amyloid (Fig. Fig. 2), we 
sought to pinpoint which oligodendrocyte subtype is spatially asso-
ciated with tauopathy. Using the aforementioned grid-based spatial 
correlation analysis, we found that in the 13-month TauPS2APP mice, 
the cell density of all three oligodendrocyte subtypes and OPC substan-
tially increased in regions with higher p-tau signals in the absence of 
Aβ pathology (Fig. 5i,j). We observed that p-tau signals were concen-
trated in the alveus of the hippocampus, which contains axon bundles 
of hippocampal neurons (alveus, Fig. 5i,k). Compared with 13-month 
control mice, the oligodendrocyte densities increased markedly (two- 
to four-fold) in the alveus region of 13-month TauPS2APP mice (Fig. 5k). 
In total, the spatial analysis of cells of the oligodendrocyte lineage in 

relation to p-tau revealed a strong association between tauopathy and 
the accumulation of oligodendrocytes subtypes (Fig. 5j,k).

Through analyzing the DEGs in oligodendrocytes, we identified 
and verified a group of genes (such as Klk6 and Cd9) that were strongly 
upregulated in 13-month-old TauPS2APP mice compared to the same 
age control mice (Extended Data Fig. 7f and Supplementary Table 3). 
The DEG analysis also showed that the astrocyte marker gene Gfap was 
upregulated in both microglia and oligodendrocytes of 13-month-old 
TauPS2APP mice (Extended Data Figs. 4f and 7f). While Gfap mRNA has 
been detected in nonastrocytes by snRNA-seq8,12, we cannot exclude 
that the observed expression of Gfap by oligodendrocytes in our spa-
tial transcriptomics data is due to its presence in the processes of 
astrocytes that physically surround other cell types. GO term analy-
sis indicated the involvement of oligodendrocyte DEGs in glial cell 
development (that is, Mobp and Plp1) and myelination (that is, Mbp 
and Tspan2) during disease progression (Extended Data Fig. 7f,g). 
Interestingly, SDEG analysis of oligodendrocytes near plaques revealed 
increased expression of these genes, suggesting subpopulation(s) of 
oligodendrocytes (with elevated expression of C4b and Klk6) might 
be responding to plaques or interacting with other cells or cellular 
compartments (microglia, astrocytes and/or dystrophic neurites) that 
are affected by amyloid pathology (Fig. 5l, Extended Data Fig. 7h and 
Supplementary Table 4). The scWGCNA identified four gene modules in 
oligodendrocytes, of which module one (OM1) showed the most signifi-
cant DEG enrichment and was also upregulated in near-plaque regions 
(Extended Data Fig. 7i–k and Supplementary Table 5), suggesting that 
OM1 was the disease-associated gene module in oligodendrocytes. GO 
analysis showed that the OM1 module genes are involved in myelination 
and axon ensheathment (Extended Data Fig. 7l).

Susceptibility of neuron to Aβ plaques and p-tau
Besides cellular changes in glial cells, the transcriptomic responses in 
neurons are critical for understanding the mechanisms of neurodegen-
eration. Subclustering transcriptomic analysis of the neurons in the 
cortex and hippocampus identified eight excitatory neuron subtypes 
and six inhibitory neuron subtypes (Fig. 6a–d). As visualized in the 
spatial cell map of neurons (Fig. 6e,f and Extended Data Fig. 8), the four 
subtypes of cortical excitatory neurons correspond to different cortical 
layers (CTX-Ex1 corresponds to layers 2/3, CTX-Ex2/3 corresponds to 
layers 4/5, CTX-Ex4 corresponds to layer 6.); the excitatory neuronal 
types in the hippocampal region correspond to the principal cells of 
DG, CA1, CA2 and CA3. Among the four subtypes of inhibitory neurons, 
Pvalb and Sst neurons were present at higher density in the cortex while 
Cnr1 and Lamp5 neurons were more abundant in the hippocampus 
(Extended Data Fig. 9a,b).

We investigated neuron subtype compositions and their tran-
scriptomic profiles in relation to Aβ plaques. In the cortex, there was 
a notable paucity (strong relative reduction) of all types of neurons 
adjacent to plaques (<10 μm; Fig. 6g,h and Extended Data Fig. 9c,d), 
anticorrelating with the large increase in density of microglia close to 
plaque. In the hippocampus, the impact of plaque on the density of 

Fig. 6 | Spatiotemporal gene expression analysis of neurons in TauPS2APP 
and control samples. a, UMAP visualization showing four subclusters of  
cortex excitatory neuron (n = 18,303). b, The expression level of representative 
gene markers among different subclusters of cortex excitatory neuron cells.  
c, UMAP visualization showing six subclusters of inhibitory cell (n = 4,163). d, The 
expression level of representative gene markers among different subclusters 
of inhibitory neuron cells. e,f, Top: Spatial map of Aβ plaque and p-tau with 
excitatory (e) and inhibitory (f) neurons in the TauPS2APP 13-month samples. 
Bottom: high magnification views of areas indicated in the black boxes on the 
top panel. g, h, Stacked bar charts showing the density of each subcluster of 
excitatory (g) and inhibitory (h) neuron population from different brain regions 
at different distance intervals to the Aβ plaque of the 13-month TauPS2APP 
sample. Black asterisks denote significantly enriched neuron subclusters in 
each distance interval. Red asterisks denote significantly decreased neuron 

subclusters in each distance interval. One-sided one-sample t-test, *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001 versus overall cell density. i, Stacked bar 
charts showing the composition of p-tau+ excitatory neurons and inhibitory 
neurons in TauPS2APP mice at two different time points defined by the ratio 
of tau+ pixels to the area of each cell (Methods). j, p-tau signal quantification 
around plaques. p-tau+ pixels (intensity > threshold; Methods) were quantified 
at a different distance to the Aβ plaque in the cortex and subcortical regions of 
the TauPS2APP 13-month samples. Asterisks denote regions with statistically 
significantly higher p-tau percentage compared to the overall p-tau percentage. 
One-sided one-sample t-test, *P < 0.05, **P < 0.01 versus overall p-tau percentage. 
k, Synaptic gene ontology (SynGO) term enrichment of DEGs (P < 0.05) identified 
from the p-tau+ CA1 neurons versus p-tau− CA1 neurons in the 13-month 
TauPS2APP samples using SynGO. Color of the sunburst plot represents −log10 Q 
value at 1% FDR.
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neuron subtypes was difficult to interpret because of the anatomic 
organization of the hippocampus and because amyloid plaques were 
concentrated in the neuropil, relatively far from the cell body layers and 
mostly in the molecular layer of dentate gyrus (Fig. 6g and Extended 
Data Fig. 9c).

To investigate the neuronal transcriptomic alterations induced 
by tauopathy, we first identified p-tau positive (p-tau+) neurons whose 
cell bodies contained positive voxels of p-tau immunostaining signals 
(Methods). There was zero detectable p-tau+ neuron in control mice. 
In TauPS2APP mice, there were five times more p-tau+ neurons at 13 
months than at 8 months. At 8 months, the majority of p-tau+ neurons 
were CTX-Ex2 excitatory neurons, whereas at 13 months the majority 
of p-tau+ neurons were the CA1 excitatory neurons of hippocampus. 
Inhibitory neurons account for <20% of p-tau+ neurons, most of them 
were Pvalb neurons at 8 months, whereas at 13 months, most of them 
came from the Sst population (Fig. 6i). We also quantified the p-tau 
signal around the plaques and found that the p-tau signal was enriched 
within 10 μm distance near plaques (Fig. 6j). Considering neuronal cell 
bodies were relatively depleted within the 10 μm range, the observed 
p-tau signals are likely to be included in the dystrophic (injured) neu-
rites that accumulate around plaques40.

We finally examined the DEGs of all neuronal types in response 
to Aβ plaques and p-tau. SynGO analysis42 of DEGs in p-tau+ CA1 neu-
rons at 13 months revealed changes in synapse organization, synaptic 
vesicle cycle and chemical synaptic transmission (Fig. 6k). DEGs in all 
neurons of TauPS2APP at 13 months were enriched in synapse assembly, 
regulation of presynaptic membrane potential and chemical synaptic 
transmission (Extended Data Fig. 9e). Given the previously reported 
associations between dentate gyrus neurons and AD50, we also exam-
ined the DEGs of the dentate gyrus neurons, which are related to synap-
tic transmission as well as nervous system development and regulation 
of synaptic plasticity (Extended Data Fig. 9f,g).

Integrative analysis of disease-associated cells and genes
The analyses above focused on dissecting disease-associated subtypes 
and DEGs within major brain cell types. To synthesize a comprehensive 
picture of AD gene pathways from multiple cell types, we performed 
integrative analyses of disease-associated cells and genes. We identified 
plaque-associated SDEGs from all cell types by clustering genes based 
on their expression profiles as a function of distance from amyloid 
plaques (Fig. 7a). We identified six clusters of SDEGs as follows: clusters 
1–3 are specifically upregulated at different distances near plaques 
and can be regarded as PIGs (listed in Fig. 7b–d) and cluster 4–6 are 
relatively downregulated near plaques and enriched with neuronal 
genes (Supplementary Table 4). We identified 49 PIGs at 8 months and 
76 PIGs in the TauPS2APP sample at 13 months with adjusted P < 0.05 
(Fig. 7e). Thirty-six of 49 PIGs in the 8-month TauPS2APP sample were 
also found in the 13-month samples (Fig. 7e). The PIGs enriched within 
10 μm distance from plaques were mainly DAM marker genes, such as 
Trem2, Cst7, Ctsb, Apoe and Cd9 (Fig. 7b,c). The Astro3 marker Vim was 
upregulated in the regions 10–20 μm away from plaques in AD 13-month 

samples (Fig. 7c), which is consistent with our previous finding that 
DAA-like cells enriched in the 10–20 μm ring (Fig. 4). Although SDEGs in 
cluster 4–6 (Supplementary Table 4) are less substantially upregulated 
at the near plaque regions and not defined as PIGs, they are also valu-
able to reveal potential disease mechanisms. Comparing our PIGs with 
previously reported PIGs identified from 18-month AppNL-G-F mice38, 
19 of 49 and 21 of 76 PIGs in our TauPS2APP 8-month and 13-month sam-
ples, respectively, overlapped with previously reported PIGs (Fig. 7e). 
A major advantage of STARmap PLUS is that its single-cell resolution 
enables the identification of cell type resolved SDEGs (Extended Data 
Figs. 4g, 6e and 7h). We performed a comparative GO analysis51,52 using 
cell type resolved SDEGs from three major glial cell types (microglia, 
astrocytes and oligodendrocytes; Fig. 7f), showing cell type dependent 
enrichment patterns in the biological processes of neuroinflammatory 
response, apoptotic neuron death, glial cell differentiation, synaptic 
transmission, vesicle fusion and secretion hormone levels.

To validate the findings from the study, we repeated the STAR-
map PLUS experiment on a separate set of TauPS2APP mice, this time 
using a focused subset of genes (64 key cell type marker genes and 
disease-associated genes; Supplementary Tables 1,2 and Extended 
Data Fig. 10). We first validated STARmap PLUS by including an addi-
tional protein staining of anti-GFAP antibody, which showed consistent 
co-expression pattern between GFAP mRNA and protein signals and 
confirmed the accuracy of cell type identifications in STARmap PLUS 
procedures (Extended Data Fig. 10e–h). The focused 64 gene analysis 
yielded cell clustering results, DEG data and spatial map information 
that were highly consistent with the major conclusions derived from 
the 2,766 gene datasets including the spatial enrichment of various 
glial cells surrounding plaques (Extended Data Fig. 10i), the infiltration 
of oligodendrocytes in hippocampus alveus (Extended Data Fig. 10j) 
and cell type resolved DEGs and SDEGs (Extended Data Fig. 10k–m).

Discussion
Here we developed STARmap PLUS for in situ detection of RNAs and 
proteins in the same tissue section at subcellular resolution. Compared 
to previously reported image-based in situ transcriptomics methods 
(that is, original STARmap, MERFISH, ISS and BOLORAMIS)30,34,35,37, we 
have substantially improved the number of in situ sequenced genes 
in tissues and enabled simultaneous profiling of RNAs and proteins 
in intact hydrogel-tissue scaffolds. Spatial barcoding followed by 
next-generation sequencing methods (such as spatial transcriptom-
ics and slide-seq)31,32 enables whole transcriptome detection; however, 
these methods lack single-cell or subcellular resolution and cannot 
detect RNA and protein simultaneously in the same tissue section. 
The development of STARmap PLUS enables a multimodal analysis 
of spatially distributed RNAs and proteins, affording an opportunity 
to study biological systems in a more comprehensive manner. This 
method is widely applicable to studies of physiological and pathologi-
cal mechanisms in diverse healthy and diseased tissues by integrative 
mapping of single-cell transcriptomic states, tissue morphology and 
disease markers.

Fig. 7 | Integrative spatiotemporal analysis of disease-associated cell types 
and gene programs. a, Matrix plot showing the gene clustering results in each 
distance interval around the Aβ plaque in TauPS2APP 8-month samples (left) and 
TauPS2APP 13-month samples (right). Colored by row-wise z score. b,c, Matrix 
plot showing the PIGs (enriched in 0–30 μm interval, adjusted P < 0.05) in each 
distance interval around the Aβ plaque in TauPS2APP 8-month sample (b) and 
TauPS2APP 13-month sample (c). Colored by row-wise z score. d, Representative 
images showing the spatial pattern of the gene set score for three spatial  
DEG clusters and corresponding cell type composition around plaque in  
the TauPS2APP mice at 13 months. Five concentric boundaries that are  
10, 20, 30, 40 and 50 μm from each plaque were generated to quantify the cell 
type composition of each layer. Scale bar, 10 μm. e, Venn diagram highlighting 
the overlap of SDEGs in the TauPS2APP 8- and 13-month samples with SDEGs  
in TauPS2APP and previously reported PIGs in 18-month AppNL-G-F mice.  

f, An enrichment map showing the substantially enriched GO terms of cell type 
resolved SDEGs of microglia, astrocyte and oligodendrocyte in the TauPS2APP 
13-month samples. Nodes represent the enriched GO terms; the size of each node 
corresponds to the number of genes in the GO terms (gProfiler term threshold: 
Fisher’s one-tailed test, P < 0.05; cytoscape node cut-off: FDR q < 0.1). Edges 
between nodes represent overlapping genes between two GO terms. Clusters 
with less than five nodes are filtered out. g, Histograms of Micro3, Astro3,  
Oligo2/Oligo3, OPC and neuronal cells spatial distribution around Aβ plaque in 
the TauPS2APP 8-month sample (left) and 13-month sample (right). h, Schematic 
diagram showing the spatial distribution of different cell types around Aβ 
plaque (top) and oligodendrocyte subtypes in hippocampal alveus (bottom) 
in the TauPS2APP mouse model. The number of cells in the schematic diagram 
represents the approximate ratio of cell number for each cell type.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | March 2023 | 430–446 443

Article https://doi.org/10.1038/s41593-022-01251-x

1020
30

40

1020
30

40

1020
30

40

1020
30

40

TauPS2APP 8 mo

Aβ plaque

Micro1/Micro2

Astro1

Micro3 (DAM)
Cst7
Ctsb
Apoe

Astro3 (DAA like)
Gfap
Vim
Clu

OPC
Pdgfra
Cacng4

Oligo3
C4b
Cldn11

Neuron
Ddit3
Ccnb2

TauPS2APP 13 moh

Oligo 1

20 µm

40 µm

10 µm

20 µm

40 µm

10 µm

Oligo2
Klk6

Control 13 mo

CA1

Alveus

Corpus
Callosum

TauPS2APP 13 mo

p-Tau positive
CA1 neuron

CA1 neuron

Astro2
Tspan7
Ttyh1

Neuron

OPC

Oligo2/3

Astro3

Micro3

g

a

1

2

3

4

5

6

1

2

3

4

5

6

TauPS2APP 8 mo TauPS2APP 13 mo

0–10
10

–2
0
20

–3
0

30–4
0

>4
0

e

AppNL-G-F

18 mo PIGs

TauPS2APP 13 mo PIGs 

TauPS2APP 8 mo PIGs 

2

19

38

36

17

13

Aldoc 
Ank 
Ccl6 
Cst7 
Ftl1 
Lamp1

Myo9a 
Satb1 
Selplg 
Serpine2 
Sparc 
Tmsb4x

Tshz2 
Cd68 
P2ry12 
Tgfbr2 
Tmem176b

Apoe 
Axl 
Cd63 
Cd9

Ctsb 
Ctsl 
H2-K1

Lyz2 
Trem2 
Gfap

C1qa 
C1qb 
Cst3

Ctss 
Fcrls 
Grn

Hexb 
Itgb5 
Ly86 

Clu 
Olfml3

c

–2 –1 0 1 2

Z score

TauPS2APP 13 mo

Lamp1
Ccl4
Sparc
H2−ab1
Mertk
Tns3
Ftl1
Cd63
Lyz2
Hexb
Ctss
Ly86
Ccl6
Itgb5
Ctsl
Fcrls
Ptpro
Cst3
Trem2
C1qa
C1qb
Cst7
Cd68
Grn
Cd9
Ctsb
Serpine2
Myo9a
Olfml3
Ank
Lyn
Tgfbr2
Cd83
Gpnmb
Apoe
Kcnj2
Fabp5
Ifi27l2a
Tpt1
Fcgr1
Nrp1
Tmsb4x
Kctd12
Selplg
P2ry12
Pabpc1
Plekho1
Gpsm3
Lilrb4a
Fam20c
Ctps
Ly6e
Axl
H2−k1
Anxa5
Tmem176b
Gfap
Cd81
Serpinb1b
Itpr1
Vim
Mt1
Mt2
Slc9a3r2
Fxyd1
Tmsb10
Aldoc
Olfm2
Epas1
Tshz2
Satb1
Clu
Tspan2
Plp1
Car2
Grm3

Rep. 1 Rep. 2

f

Positive di�erentiation 
hemopoiesis

Immune e�ector

Wound healing 
coagulation

Positive developmental growth

Endocytosis receptor 
internalization

Homeostasis cytosolic 
calcium

Angiogenesis 
vasculature vessel

Actin filament based

Dendritic spine head

Bounded morphogenesis 
projection

Migration ameboidal cell

Component presynaptic 
membrane

Clathrin golgi 
network

Response neuroinflammatory

Vesicle fusion 
endomembrane

Distal axon 
terminus

Channel complex 
transporter

Long memory learning

Exocytic transport vesicle

Secretion hormone 
levels

Exogenous peptide antigen

Postsynaptic specialization 
integral

Transmembrane ion 
transport

Assembly synapse junction

Lytic vacuole

Transforming 
factor beta

Neuron death 
apoptotic

Programmed 
death apoptotic

Lipoprotein localization

Nutrient levels 
starvation

Mapk cascade Erk1

Regulation transferase 
phosphorylation

Glial astrocyte 
gliogenesis

Neutrophil chemotaxis 
chemokine

Synaptic transmission 
glutamatergic

Microglia Astrocyte Oligodendrocyte

C
lu

st
er

Distance to plaque (µm)

0–10
10

–2
0
20

–3
0

30–4
0

>4
0

b TauPS2APP 8 mo

0–10
10

–2
0

20
–3

0

30–4
0

>4
0

Distance to plaque (µm)

Gfap
Ank
H2−k1
Tgfbr2
Selplg
P2ry12
C1qb
Sparc
Serpine2
Ftl1
Ctsb
Cd68
Myo9a
Ly86
Apoe
Grn
Ccl6
Ctss
Cd9
Hexb
Ctsl
Itgb5
Cst7
C1qa
Trem2
Fcrls
Cst3
Lyz2
Tmsb4x
Axl
Lamp1
Tmem176b
Cd63
Tshz2
Pfkp
Astn2
Cplx1
Nap1l5
Snap25
Pak1
Tox
Aldoc
Pcsk1n
Vsnl1
Gabra1
Satb1
Shank1
Resp18
Ckb

Rep. 1 Rep. 2

−2 −1 0 1 2

Z score

Cluster 2 PIGs (10–20 µm)

Cluster 3 PIGs (20–30 µm)

Spatial cell map

TauPS2APP 13 mo
cluster 1 PIGs (0–10 µm)

Inhibitory neuronAstrocyte
Endothelial cellMicroglia

Oligodendrocyte
OPC Aβ plaque

SMC

Min Max

Aβ plaque

Aβ plaque

Aβ plaque

Distance to plaque (µm)

d

1

2

3

C
lu

st
er

1

2

3

C
lu

st
er

0–10
10

–2
0

20
–3

0

30–4
0

>4
0

0–10
10

–2
0

20
–3

0

30–4
0

>4
0
0–10

10
–2

0
20

–3
0

30–4
0
>4

0

PIGs expression score

C
el

l d
en

si
ty

Distance to plaque (µm)

TauPS2APP 8 mo TauPS2APP 13 mo

0–10
10

–2
0
20

–3
0

30–4
0

Ove
ral

l
0–10

10
–2

0
20

–3
0

30–4
0

Ove
ral

l

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | March 2023 | 430–446 444

Article https://doi.org/10.1038/s41593-022-01251-x

Analysis framework
In a mouse model of AD exhibiting amyloidosis, tauopathy and neuro-
degeneration, we applied this high-resolution and multimodal in situ 
mapping with four computational analysis strategies to identify 
disease-associated cell populations and gene programs as follows: (1) 
hierarchical cell clustering analysis to pinpoint disease-associated cell 
subtypes, (2) pseudotime trajectory analysis to reconstruct the transi-
tions of cell states during disease progression, (3) spatial analysis to 
recognize changes in cell types and cell states in physical proximity of 
Aβ plaques and tauopathy; (4) differential gene expression analysis in 
spatiotemporal relationship with amyloid and p-tau and disease stage 
to identify disease-associated gene pathways. This analysis framework 
successfully traced how AD hallmark pathologies correlate with gene 
pathways that drive inflammation, gliogenesis and neurodegeneration 
across different cell types. Because STARmap PLUS is a targeted analysis 
based on a curated gene list (2,766 genes in this study), it may not fully 
capture all disease-associated biological pathways and gene markers.

Core–shell structures surrounding plaques
Applying our methods to the TauPS2APP mouse AD model at two differ-
ent ages, we have constructed a cell type and cell state resolved spati-
otemporal map of the TauPS2APP mouse model (Fig. 7g,h). Specifically, 
in response to the emergence of Aβ plaques (at 8 months or earlier), 
microglia are the primary responders, closely aggregating around 
plaques (<10 μm distance away from plaques; Fig. 7g,h). Integrative 
spatial and pseudotime analysis of microglia subtypes suggests a cell 
state transition from Micro1 and Micro2 to Micro3 (DAM) subtype in 
microglia cells accumulating around Aβ plaques (Fig. 3 and Extended 
Data Fig. 4). The transition from Astro2 to Astro3 (DAA-like) in the ring 
(10–30 μm) next to the DAM microglia was seen at a later stage (13 
months), indicating possible induction of DAA by DAM. Indeed, a pre-
vious study showed that reactive astrocytes with the high expression 
of DAA marker genes Gfap and Vim were induced by activated micro-
glia21. Oligodendrocyte populations (Oligo2/Oligo3) accumulate near 
plaque (10–40 μm) at a later stage (13 months) than microglia (Fig. 7g). 
Unexpectedly, we discovered that OPCs were enriched in the region 
10–30 μm from plaques at 8- and 13-month stages, indicating potential 
in situ proliferation and differentiation of OPCs to oligodendrocytes 
at intermediate distance from plaque. In contrast to the accumulation 
of glia, neuron density around plaque declined progressively from 8 
to 13 months (Fig. 7g,h).

Based on the collective data, we propose a core–shell structure 
of glial cells surrounding Aβ plaques where the DAM emerge early in 
disease near plaques as the core, and the shell is a gliogenesis zone 
enriched for DAA-like cells, OPC and oligodendrocytes that develop 
at a later disease stage, perhaps dependent on the formation of the 
inner ring of reactive microglia. Because STARmap PLUS only captures 
snapshots from different disease stages, the dynamic cell type and state 
transitions inferred from pseudotime trajectory reconstruction and 
spatial patterns need future verification by live-cell imaging or in vivo 
cell-fate tracing approaches.

Oligodendrocytes and tauopathy
In the TauPS2APP model, hyperphosphorylated tau (as detected with 
AT8 antibody) was mainly found in CA1 excitatory neuronal bodies 
and its upper layer of axon tracts (alveus), where it is strongly associ-
ated with oligodendrocyte subtypes regardless of the presence or 
absence of plaques (schematized in Fig. 7h). It is unclear whether 
the enrichment of oligodendrocytes is a reactive mechanism to sup-
port tauopathy-injured axons, repair damaged myelin, or whether 
oligodendrocytes instead exacerbate tauopathy. It is possible that 
oligodendrocyte subtypes might feature distinct responses and exert 
different impacts; for example, Oligo1 is homeostatic and protective 
while Oligo2 or Oligo3 is detrimental in response to tau-driven changes. 
The reciprocal functional interactions between oligodendrocytes and 

neurons (beyond oligodendrocytes providing electrical insulation 
and metabolic support for axons) are increasingly appreciated and 
studied53. Single-cell RNA-seq studies of human AD brain tissues have 
noted major transcriptomic changes in oligodendrocytes, but with-
out spatial information in relation to plaque and p-tau12. Enabled by 
high-resolution spatial transcriptomic analysis of oligodendrocytes in 
the TauPS2APP mice, we identified oligodendrocyte subtypes that are 
associated with tauopathy. Further pathway analysis implicated oligo-
dendrocyte DEGs in myelination and axon ensheathment (Extended 
Data Fig. 7g), pointing to a potential correlation between axonal tauopa-
thy and oligodendrocytes.

Implications for neurodegeneration mechanisms in AD
The overall density of neuronal cells in the cortex declines near Aβ 
plaques (Fig. 6g,h), implying neurotoxicity or physical exclusion due 
directly to Aβ aggregation or indirectly via the effects of amyloid on 
microglia and other glia surrounding the plaque. This notion is sup-
ported by the accumulation of p-tau in dystrophic neurites near to 
plaque, which we confirmed with STARmap PLUS. We cannot exclude 
that neurons are merely crowded out from plaque-adjacent regions by 
reactive glia; however, we note that the TauPS2APP mice show macro-
scopic brain volume loss by 13 months of age40 and reduced synapse 
density around plaques by 17 months of age54. Further consistent with 
a neuronal loss around plaques, we note that neurons in DG, where a 
large amount of Aβ plaques appeared by 13 months, showed altered 
transcriptional profile in the regulation of neuron projection devel-
opment and molecular pathways related to synapse structure and 
organization. Meanwhile, all neuronal types examined in the cortex 
and hippocampus of TauPS2APP share some common DEGs (that is, 
Ccnb2 and Ddit3) that might suggest a general mechanism of neuro-
degeneration across neuronal cell types. By simultaneous transcrip-
tomic profiling and immunostaining in STARmap PLUS, we observed 
that most of the p-tau+ inhibitory neurons in 13-month TauPS2APP 
mice belong to the Sst interneuron subtype, which may be related to 
the observation that Sst neurons are more vulnerable to tauopathy 
than other neuronal types in human AD patients55. The core–shell glial 
structure around plaques implies potential microglial crosstalk with 
astrocytes21 and oligodendrocytes. Different subtypes of the oligoden-
drocyte lineage respond differently to plaques and tauopathy, suggest-
ing distinct modes of oligodendrocyte recruitment and reactivity (for 
example, microglia-oligodendrocyte/OPC interactions near plaques 
and neuron-oligodendrocyte interactions in tauopathy). Future studies 
in human patient samples and other AD disease models are needed to 
test the potential pathogenic mechanisms revealed by STARmap PLUS 
analysis of the TauPS2APP mouse brains.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
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Methods
Mice
All animal procedures followed animal care guidelines approved by 
the Genentech Institutional Animal Care and Use Committee (IACUC), 
and animal experiments were conducted in compliance with IACUC 
policies and NIH guidelines. The mice used for STARmap PLUS include 
the pR5-183 line expressing the P301L mutant of human tau and PS2N141I 
and APPswe (PS2APPhomo; P301Lhemi, termed as ‘TauPS2APP’ in the current 
study) and nontransgenic control (termed as ‘control’ in the current 
study). Animals were housed in specific pathogen-free conditions with 
12 h light/12 h dark lighting and maintained on a regular chow diet. 
For 2,766 gene experiments, two 8-month TauPS2APP male mice, two 
8-month control male mice, two 13-month TauPS2APP male mice and 
two 13-month control male mice were used. For the 64 gene valida-
tion experiment, one 8-month TauPS2APP male mouse, one 8-month 
control male mouse, one 13-month TauPS2APP male mouse and one 
13-month control male mouse were used. No statistical methods were 
used to predetermine sample sizes, but our sample sizes are similar to 
those reported in previous publications9,38.

Tissue collection and sample preparation for STARmap PLUS
Animals were anesthetized with isoflurane and rapidly decapitated. 
Brain tissue was removed, placed in O.C.T, then frozen in liquid nitro-
gen and kept at −80 °C. For the tissue sectioning, mouse brains were 
transferred to cryostat (Leica CM1950) and cut into 20 μm thick slices 
in coronal sections at −20 °C. The slices were attached to each well of 
glass-bottom 12-well plates pretreated by methacryloxypropyltri-
methoxysilane (bind-silane) and poly-d-lysine. The brain slices were 
fixed with 4% PFA in 1× PBS buffer at room temperature for 15 min, then 
permeabilized with −20 °C methanol and placed at −80 °C for an hour 
before hybridization.

STARmap PLUS to detect spatial RNA and protein signals
The samples were taken from −80 °C to room temperature for 5 min and 
then washed with PBSTR buffer (0.1% Tween-20, 0.1 U μl−1 SUPERase·In 
RNase Inhibitor in PBS). After washing, the samples were incubated 
with 300 μl of 1× hybridization buffer (2× SSC, 10% formamide, 1% 
Tween-20, 0.1 mg ml−1 yeast tRNA, 20 mM ribonucleoside vanadyl 
complexes, 0.1 U μl−1 SUPERase·In RNase Inhibitor and pooled SNAIL 
probes (ordered from IDT) at 1 nM per oligo) in a 40 °C humidified 
oven with shaking and parafilm wrapping for 36 h. The samples were 
washed by PBSTR twice and high-salt washing buffer (4× SSC dissolved 
in PBSTR) once at 37 °C. Finally, the samples were rinsed with PBSTR 
once at room temperature. The samples were then incubated with 
a ligation mixture (1:10 dilution of T4 DNA ligase in 1× T4 DNA ligase 
buffer supplemented with 0.5 mg ml−1 BSA and 0.2 U μl−1 of SUPERase·In 
RNase inhibitor) at room temperature for 2 h with gentle shaking. After 
ligation, the samples were washed twice with PBASR buffer and then 
incubated with rolling circle amplification mixture (1:10 dilution of 
Phi29 DNA polymerase in 1× Phi29 buffer supplemented with 250 μM 
dNTP, 20 μM 5-(3-aminoallyl)-dUTP, 0.5 mg ml−1 BSA and 0.2 U μl−1 of 
SUPERase·In RNase inhibitor) at 30 °C for 2 h with gentle shaking. Sub-
sequently, the samples were washed twice with PBST (0.1% Tween-20 
in PBS) and blocked with blocking solution (5 mg ml−1 BSA in PBST) at 
room temperature for 30 min. The samples were then incubated with 
Phospho-Tau (Ser202, Thr205) Antibody (Thermo, MN1020B; 1:100 
dilution in blocking solution) and anti-GFAP Antibody (only for 64 gene 
samples; Abcam, ab4674; 1:500 dilution in blocking solution) or 2 h at 
room temperature. The samples were washed with PBST three times for 
5 min each. Next, the samples were treated with 20 mM Acrylic acid NHS 
ester in PBST for 1 h and rinsed once with PBST. The samples were incu-
bated in the monomer buffer (4% acrylamide and 0.2% bis-acrylamide in 
2× SSC) for 15 min at room temperature. Then the buffer was aspirated, 
and a 35 μl polymerization mixture (0.2% ammonium persulfate and 
0.2% tetramethylethylenediamine dissolved in monomer buffer) was 

added to the center of the sample and immediately covered by Gel 
Slick-coated coverslip. The polymerization reaction was undergone 
for 1 h at room temperature (N2) and washed by PBST twice for 5 min 
each. Subsequently, the samples were treated with dephosphorylation 
mixture (1:100 dilution of Shrimp Alkaline Phosphatase in 1× CutSmart 
buffer supplemented with 0.5 mg ml−1 BSA) at 37 °C for 1 h and washed 
by PBST three times for 5 min each.

For SEDAL sequencing, each cycle began with treating the sample 
with stripping buffer (60% formamide and 0.1% Triton-X-100 in H2O) at 
room temperature for 10 min twice, followed by PBST washing three 
times, 5 min each. The sample was incubated with a sequencing mixture 
(1:25 dilution of T4 DNA ligase in 1× T4 DNA ligase buffer supplemented 
with 0.5 mg ml−1 BSA, 10 μM reading probe and 5 μM fluorescent oligos) 
at room temperature for at least 3 h. The samples were washed by 
washing and imaging buffer (10% formamide in 2× SSC) three times, 
10 min each, then immersed in washing and imaging buffer for imaging.

Images were acquired using Leica TCS SP8 confocal microscopy 
(Leica LAS-X microscope imaging software) with a 405 nm diode,  
a white light laser, and a ×40 oil immersion objective (NA 1.3). The laser  
lines we used for SEDAL sequencing are ALEXA 488 nm, ALEXA 546 nm, 
ALEXA 594 nm and ALEXA 647 nm. We imaged 56–64 FOVs for each 
sample with a voxel size of 95 nm (x axis) × 95 nm (y axis) × 350 nm 
(z axis) and 30 z slices (10 μm in total). Eight cycles of imaging were 
performed to detect 2,766 genes.

After eight-round in situ sequencing for 2,766 gene samples and 
four-round in situ sequencing for 64 gene samples, the sample was incu-
bated in X-34 solution (10 μM X-34, 40% ethanol and 0.02 M NaOH in  
1× PBS) at room temperature for 10 min, followed by quick washing with 
1× PBS for three times. The samples were incubated with 80% EtOH for 
1 min and then washed with PBS 3 times, 1 min each. Then the samples 
were incubated with the goat anti-mouse IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488 (Thermo, A-11001; 1:80 dilution 
in blocking solution) and goat anti-chicken IgY (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor Plus 647 (only for 64 gene samples; 
Thermo, A32933; 1:80 dilution in blocking solution) at room tempera-
ture for 12 h. The sample was washed three times with PBST for 5 min 
each. The samples were incubated with the 500 nM 19-nt fluorescent 
oligo complementary to DNA amplicon in PBST (only for 2,766 gene 
samples) at room temperature for 1 h, then washed by PBST three 
times for 5 min each. Propidium iodide (PI) staining was performed 
following the manufacturer’s instructions for the purpose of cell seg-
mentation. Another round of imaging with the same resolution as the 
SEDAL sequencing was performed to detect spatial protein signals.  
The data collection was not randomized, as we needed to image  
TauPS2APP sample before the control sample (which showed no plaque 
and p-tau signal) to make sure the laser intensity was set up suitable. 
Data collection and analysis were not performed blind to the conditions 
of the experiments. No animals or data points were excluded from  
the analyses.

STARmap PLUS image processing
All of the image processing steps were implemented using MATLAB 
R2019b and related open-source packages in Python 3.6 and applied 
according to (ref. 34).

Image preprocessing and registration. First, the illuminance and 
contrast level of images were unified with a multidimensional his-
togram matching by MATLAB function ‘imhistmatchn’. Then, cus-
tomized tophat filtering was applied to the sequencing images to 
further enhance the signal and suppress the background noise. Image 
registration was applied according to (ref. 34). Global image registra-
tion was accomplished using a 3D fast Fourier transform to compute 
the cross-correlation between two image volumes at all translational 
offsets. The position of the maximal correlation coefficient was identi-
fied and used to translate image volumes to compensate for the offset.  
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Then a nonrigid registration was applied with MATLAB function 
‘imregdemons’ to further align images in different sequencing rounds.

Spot calling. After registration, individual dots were identified sepa-
rately in each color channel on the first round of sequencing. Ampli-
con dots were identified by finding local maxima in 3D with MATLAB 
function ‘imregionalmax’. Intensity threshold was applied to exclude 
dim dots. Because the dot was approximately six pixels in diameter on 
the xy plane, the dominant color for that dot across all four channels 
on each round was determined by a 5 × 5 × 3 voxel volume surround-
ing the dot centroid. The integrated intensity of the voxel volume in 
each channel was used for color determination. In this case, each dot 
in each round had an L2 normalized vector with four elements. The 
color of each dot was determined by the corresponding channel with 
the highest value in the vector. Dots with multiple maximum values in 
the vector were discarded.

Barcode filtering. Dots were first filtered based on the quality scores 
(average of −log(color vector value in the dominant channel) across all 
sequencing rounds). The quality score quantified the extent to which 
each dot on each sequencing round came from one color rather than 
a mixture of colors. The barcode codebook was converted into color 
space based on the expected color sequence following the 2-base 
encoding of the barcode DNA sequence. Dot color sequences that 
passed the quality threshold and matched sequences in the code-
book were kept and identified with the specific gene that that barcode 
represented; all other dots were rejected. The high-quality dots and 
associated gene identities in the codebook were then saved for down-
stream analysis.

2D cell segmentation. Nuclei were automatically identified by apply-
ing a pretrained 2D machine learning model from the StarDist package56 
to a sum intensity projection of the stitched PI channel following the 
final round of sequencing. Then the cell locations were extracted from 
the segmented PI image and used as markers for cell body segmenta-
tion. Cell bodies were represented by an overlay of stitched PI staining 
and merged amplicon images. A gaussian filter with σ equal to ten was 
applied to the composite image and the image was then binarized 
with Otsu thresholding strategy. To better incorporate the amplicons 
around the peripheral region of cell bodies, a binary dilation with 
a disk structure element (r = 10) was applied on the mask. Finally, a 
marker-based watershed transform was performed to segment the 
binary mask representing cell bodies. Points overlapping each seg-
mented cell region in 2D were then assigned to that cell, to compute a 
per-cell gene expression matrix.

Protein image preprocessing. p-tau images were processed using a 
customized Fiji macro57. A rolling ball background subtraction with a 
radius equal to five was applied to each image. Then each image was 
processed with a Gaussian filter with a σ value equal to two and followed 
by a maximum entropy binarization.

Cell type classification
A two-level clustering strategy was applied to identify both major and 
sublevel cell types in the dataset. Processing steps in this section were 
implemented using Scanpy v1.4.6 (ref. 58) and other customized scripts 
in Python 3.6 and applied according to (ref. 34). A standardized preproc-
essing pipeline was first performed on the single-cell gene expression 
matrix including filtering, normalization and scaling. Given that the 
biological replicates were collected in two batches, a batch correction 
process was applied with the ComBat method59 implemented in Scanpy. 
Genes with the maximum count less than two per cell were excluded in 
the following process to achieve a high-quality gene expression library. 
A PCA was applied to reduce the dimensionality of the cellular expres-
sion matrix. The top 30 PCs were used to compute a kNN graph of the 

observations. The Leiden community detection algorithm was applied 
over the kNN graph to detect cell clusters. Clusters were annotated 
based on their top representative markers. Then, they were displayed 
using the UMAP and diffusion map embeddings where each cluster was 
color-coded according to its cell type annotation. The cells for each 
interested top-level cluster were then extracted and subclustered again.

Subtype identification
Microglia, astrocyte, oligodendrocyte and neuron populations identi-
fied from the previous unsupervised clustering were extracted and the 
PCA was applied to the preprocessed gene expression profile of each 
population to compute top PCs respectively. For astrocytes, a modi-
fied preprocessing pipeline was used to further minimize the influence 
of ambient transcripts signal. In detail, genes were filtered based on 
their expression percentage within each major cell population. Genes 
expressed by less than 5% of all astrocytes were excluded and genes 
expressed by more than 85% of cells from other major cell types were 
also excluded from astrocytes’ expression profiles. The filtered gene 
expression matrix was then corrected by ComBat to account for the 
variance from experiment batches. Then, the variance from the total 
number of transcripts per cell was regressed out. After PCA, signifi-
cant principal components were identified using the elbow method. 
The PCs were also used for diffusion map modeling with the fuction 
‘tl.diffmap’. Again, a kNN graph was built with the significant PCs of 
each population and the Leiden community detection algorithm was 
applied over the kNN graph to detect cell clusters. Clusters were then 
annotated according to their representative gene markers and further 
visualized on UMAP and diffusion map embeddings.

Comparison with other datasets from integration
To further interpret and validate the disease-associated subpopula-
tions identified, a canonical correlation analysis-based integration and 
label transfer were conducted with the Seurat package (v4.0.2) in R60. 
Two different single-nucleus transcriptome datasets from AD human 
patients and 5xFAD mouse model were used as integration references 
to label cells from STARmap PLUS9,12. In detail, the count matrix of the 
human microglia and astrocytes were obtained from (ref. 12) with pro-
vided cell annotations. The gene expression matrixes were normalized 
and scaled by related functions within the Seurat package60. Genes 
from the STARmap PLUS dataset were first mapped to human genes12. 
Then, the intersection between the mapped genes and the top 2,000 
most variable genes from the corresponding human cell populations 
was used in the integration process. Each cell from the STARmap PLUS 
dataset got assigned a subcluster label from the human data. Cells with 
a prediction score higher than the overall median value were kept and 
further visualized (Extended Data Figs. 4b,c and 5e,f). Label transfer of 
the 5xFAD mice snRNA-seq dataset was achieved in the same manner 
as the process of human data but only with astrocytes of 7-month-old 
male mice in (ref. 9) (Extended Data Fig. 5g,h).

Pseudotime and trajectory analysis
An R package Monocle3 (ref. 48, https://cole-trapnell-lab.github.io/
monocle3/) was utilized for pseudotime calculation. Monocle3 firstly 
learned a principal graph (via learn_graph function) in the 2D diffusion 
map space using a dimensionality reduced representation of original 
data. Then, to compute pseudotime from the principal graph, the root 
node(s) must be specified by the user, and the pseudotime for each cell 
can be assigned by calculating the geodesic distance from root node to 
the cell node along the principal graph. In this case, the roots used in 
inference were chosen based on the spot/area in the embedding space 
that was occupied by cells from early time points (8 months) in the 
control sample as they were the cells in a relatively homeostatic state. 
The raw expression matrix of each cell type, Microglia, Astrocyte and 
Oligodendrocyte (OPC), was used separately as the input of Monocle3. 
To visualize the results, we used the original Diffusion map embedding 
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with palettes representing normalized pseudotime (rescaled to 0–1), 
cell types and sample identities.

Spatial analysis
Plaque segmentation. First, a gaussian filter with σ equal to two was 
applied to the stitched images of the plaque channel. The filtered 
images were binarized with an intensity threshold equal to 30. The 
plaques were segmented from the binarized image of the plaque chan-
nel by using the ‘bwlabel’ function in EBImage package61. Then, the size 
and the center of each plaque were calculated by using ‘computeFea-
tures.moment’ and ‘computeFeatures.shape’ functions respectively. 
Finally, plaques with an area greater than 400 pixels (~40 μm2) were 
kept for the downstream analysis.

Cell composition around plaques. As filtered plaques were acquired 
in the last step, we dilated the plaque images 5 times with steps of 10 
microns. Next, we counted the number of cells for every cell type that 
fall into different intervals. The ranges were set from 0–10 μm (Ring 1) 
to 40–50 μm (Ring 5). The statistics were normalized by calculating 
the percentage and density of each cell type in a ring. The graphical 
explanation of this analysis is shown in Fig. 2d. For the overall statistics, 
we calculated the percentage and density of each cell type in the whole 
sample. To test the significance of cell enrichment in both density and 
proportion aspects in specific intervals, two kinds of statistical tests, 
one-sample t-test and chi-square test (Fisher’s exact test), were utilized. 
One-sample t-test was used to compare the density values for each cell 
type in one interval around every plaque with the average density and 
the data met the assumptions of the statistical tests used. According 
to the difference between mean value of the density sequence and the 
average density, an alternative hypothesis was set correspondingly 
to test whether the density was substantially higher or lower. For the 
chi-square test, raw cell counts in each interval were used for the test.

Differential expression analysis
Before performing DE analysis, the dataset was normalized according 
to the following steps: (1) divide the gene counts in a sample by the 
median of total counts per cell for that sample and multiply by the scale 
factor, which was defined as the mean value of median of total counts 
per cell for all samples; (2) Perform log2 transformation by adding a 
pseudo-count of one. DE genes were identified by performing Wilcoxon 
rank-sum test between two groups of cells using the ‘FindMarkers’ func-
tion in Seurat60. For the ‘disease versus control’ comparison of specific 
cell types, the two groups of cells were extracted from TauPS2APP and 
control samples and compared. In the comparison of ‘CA1 tau+ vs. tau−’, 
tau+ CA1 cells were defined according to the fraction of tau signal area 
to the cell body’s area. The threshold was set to 0.07.

To filter out lowly expressed genes, genes that were expressed by 
less than 5% of cells in either group of the comparison were excluded. 
We also applied the following threshold values on the generated gene 
list to filter out nonsignificant genes: absolute values of log fold change 
>0.1, P < 0.05.

To visualize the DE result, we used the ‘EnhancedVolcano’ package 
(https://github.com/kevinblighe/EnhancedVolcano) to generate the 
volcano plot. DE genes with logFC > 0 were colored in red while others 
were colored in blue. Those significant genes (P < 0.05) that failed to 
pass the logFC threshold were green-tinted. All other nonsignificant 
genes were colored in gray. Note, some genes with extremely high 
−log(P value) or logFC were capped.

Pathway analysis using gProfiler
The R client of gProfiler (gprofiler2 package v0.1.9) was used to per-
form pathway analysis for each cell type with a significant (absolute 
Log2FC > 0.1, P < 0.05) DE gene list whose genes were detected in a 
minimum fraction of 5% cells in the targeted cell type. Gene Ontology 
Biological Processes (GO:BP, using the default data source provided by 

gProfiler) database was selected as the gene sets database to perform 
gProfiler analysis. To limit the size of gene sets subjected to enrich-
ment analysis, the minimum and maximum sizes of gene sets were 
set to 10 and 1,000, respectively. The enriched terms were selectively 
visualized using bar plot with their −log10(P value). The SynGO enrich-
ment tool42 was used to further characterize the synapse functions 
enriched in DEGs from Dentate gyrus and CA1 cells with tau pathology. 
Brain-expressed genes were used as the background gene list.

Grid analysis
To analyze the scattered p-tau signal, the p-tau images were first seg-
mented by a 20 μm grid (see heatmap in Extended Data Fig. 5f). For each 
block, we counted the number of cells for each major cell type and the 
overall p-tau signal intensity. Based on the distribution of p-tau inten-
sity and the existence of plaque, blocks were classified into four groups: 
no p-tau, low p-tau (intensity of p-tau in 1–50% range of population 
with nonzero p-tau signal), high p-tau w/plaque (51–100% range with 
plaque) and high p-tau w/o plaque (51–100% range without plaque). 
The significance of cell type enrichment was tested using one-sample 
t-test comparing the density values of each group with average density.

SDEGs analysis
To identify potential gene expression patterns around plaque for all 
cells, we first calculated the average expression value for each gene in 
five intervals as follows: 0–10 μm, 10–20 μm, 20–30 μm, 30–40 μm 
and >40 μm. The averaged expression matrix was calculated separately 
for disease samples in 8 and 13 months. Next, K-means clustering was 
applied to the matrix, respectively, and six clusters were obtained in 
each sample. We tested whether the averaged expression level of the 
cells within the high expression interval was substantially higher than 
that of other cells outside the interval using Wilcoxon signed-rank 
test (with adjusted P < 0.05; Supplementary Table 4). SDEGs were 
defined as substantially enriched genes within the 0–30 μm distance 
surrounding plaques (cluster 1–3). This analysis pipeline was also 
applied to microglia, astrocytes and oligodendrocytes to obtain cell 
type resolved SDEGs. For filtration, the P value threshold was firstly 
applied (Wilcoxon P < 0.05); besides, we expect SDEGs of astrocyte and 
oligodendrocyte are not enriched in the vicinity of plaques (0–10 μm) 
while genes with the highest expression interval at 20–30 μm are not 
considered as SDEGs for microglia. ‘ComplexHeatmap’ package62 is 
utilized for heatmap visualization.

Enriched GO terms analysis of SDEGs and visualization
The pathway analysis of identified SDEGs for microglia, astrocyte and 
OPC/oligodendrocyte followed the same procedure as described above 
using gProfiler (https://biit.cs.ut.ee/gprofiler/gost). The whole Gene 
Ontology database was selected as the data source for the analysis. 
After acquiring the enriched terms for SDEGs of each cell type, we used 
Cytoscape (v3.9.1) with EnrichmentMap (v3.3.1) and AutoAnnotation 
(v1.3.3) apps to integrate and visualize the results52,63. The network was 
constructed using Cytoscape and EnrichmentMap with the follow-
ing conservative parameters: nodes (gene sets) were reserved with 
P-adjusted values < 0.05 (gProfiler g:SCS threshold) and q < 0.1; the 
threshold for edges (representing gene similarity coefficient between 
gene sets) was set at 0.375. Each node was color-coded to visualize the 
distinctive and shared enriched terms in each cell type. The network 
was then clustered and annotated by AutoAnnotation (v1.3.3).

scWGCNA
We use scWGCNA, a modified WGCNA package designed to work with 
single-cell expression data49, to perform weighted gene co-expression 
network analysis for microglia, astrocytes and oligodendrocytes. First, 
scWGCNA was utilized to calculate pseudo-cells to shrink the size  
of the dataset using the top ten PCs and ten nearest neighbors. 
Next, scWGCNA used only the highly variable genes to calculate the  
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TOM matrix with automatically selected power. The co-expression 
modules were then filtered by gene numbers (≥15) and for each cell 
type. The enrichment of DEGs in each gene module was calculated 
using FindMarkers function in Seurat.

Quantification and statistical analysis
The statistical tests and number of independent replicates per experi-
ment are indicated in the figure legends. The statistical significance 
analyses of STARmap PLUS sequencing experiments are detailed in 
the Methods.

One-sample t-test was used to test the significance of cell type 
enrichment by comparing the density values of each cell type in each 
interval with average density.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The STARmap PLUS sequencing data are available on Single-Cell Portal 
at https://singlecell.broadinstitute.org/single_cell/study/SCP1375 and 
Zenodo at https://doi.org/10.5281/zenodo.7332091. Source data are 
provided with this paper.

Code availability
All code and analysis are available on GitHub at https://github.
com/wanglab-broad/mAD-analysis and at https://doi.org/10.5281/
zenodo.7458952.
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Extended Data Fig. 1 | Development of the STARmap PLUS method. a, Flow 
chart of STARmap PLUS procedure where p-tau primary antibody staining was 
performed after mRNA in situ hybridization and amplification. The imaging 
results showed strong signals from both cDNA amplicons and proteins (N = 2 
independent experiments). b, Alternative procedure where the p-tau primary 
antibody staining was conducted before mRNA in situ hybridization and 
amplification. The imaging results showed a much weaker signal from cDNA 
amplicons, suggesting RNA degradation during antibody incubation and 
washing steps (N = 2 independent experiments). PI staining, propidium iodide 
staining of cell nuclei. c, Schematic diagram of the experimental design to test 
if the tissue retains the same structure after STARmap PLUS. d, The imaging 

result before STARmap PLUS (left), after STARmap PLUS (middle), and overlay 
(right) of p-tau and Aβ-plaque signals were recorded (N = 2 independent 
experiments). e, Summary of the detection efficiency of RCA-based spatial 
transcriptomics methods. The efficiency of FISSEQ and padlock based in situ 
sequencing was extracted from Lein et al.41, and the efficiency of BOLORAMIS 
was extracted from Liu et al. 37. f,g, The ACTB mRNA signal detected by STARmap 
PLUS (f) and BOLORAMIS37 (g) in Hela cells. h, Quantification of the number 
of DNA amplicons per cell identified by STARmap PLUS and BOLORAMIS. Error 
bars, standard deviation. Data are presented as mean ± s.e.m, n = 5 images per 
condition. Two-sided Student’s t-test, ****P = 1.39×10-6.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Data processing and quality control of the STARmap 
PLUS data analysis pipeline. a, Examples showing the final imaging cycle 
detecting cell nuclei, cDNA amplicons, and protein signals in the 13-month 
control (left, N = 2 independent animals) and TauPS2APP (right, N = 2 
independent animals) mouse brain samples. Blue, Propidium Iodide (PI) staining 
of cell nuclei. Green, fluorescent DNA probe staining of all cDNA amplicons. 
White, X-34 staining of Amyloid β plaque. Red, immunofluorescent staining of 
p-tau (AT8 primary antibody followed by fluorescent goat anti-mouse secondary 
antibody). b, The flowchart of the STARmap PLUS data analysis pipeline. c, Violin 
plot showing the accuracy (correct rate) of SEDAL sequencing for each FOV for 
all samples (96.87% ± 5.00%). d, Histograms showing the ln-transformed number 
of transcripts (left) and genes (right) per cell in the 2,766-genes dataset before 

quality control. Red vertical lines represent median values. e, Histogram showing 
the number of transcripts after logarithmic transformation in the 2,766-genes 
dataset. Red vertical lines represent the filtering thresholds estimated by median 
absolute deviation (MAD). f, Number of transcripts and genes across samples. 
Violin plots showing the distribution of the number of reads per cell (top) and 
genes per cell (bottom) detected in each sample after quality control (N = 72,165 
cells). Box plots depict the median (center) and interquartile range (IQR, bounds 
of the box), with whiskers extending to either the maxima/minima or to the 
median ± 1.5× IQR, whichever is nearest. g, Number of transcripts and genes 
across major cell types. Violin plots showing the distribution of the number of 
reads per cell (top) and genes per cell (bottom) detected in each major cell type 
(N = 72,165 cells). Box plots as in (f).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Classification and spatial distribution of major cell 
types. a, Dot plot showing the expression level of top five representative gene  
markers of each major cell type. b, Matrix plot showing the averaged expression  
level of canonical gene markers for each glial cell type of the 2,766-genes  
dataset. Values are normalized for each gene. c, Barplot showing the number  
of cells per cluster in Control and TauPS2APP mice. Data are represented as 
mean with 95% CI. Asterisks denote significant differences between Control 
and TauPS2APP (n = 4 samples per condition, two-sided *P < 0.05, t-test for 
two independent samples). d, Spatial atlas of top-level cell types in cortex and 
hippocampus regions of eight samples in the 2,766-gene dataset. Scale bars,  
100 μm. e, Representative spatial distribution of cell-type compositions around 
Aβ plaque for TauPS2APP eight-month samples in both cortex and hippocampus. 
Stacked bar plot showing the density of each major cell type at different distance 

intervals to the Aβ plaque. The cell density of each major cell type in each  
area was included as the reference for comparison (overall). Asterisks denote  
significantly enriched cell types in each distance interval. One-sided one-sample 
t-Test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. overall cell density.  
f, Cell-type composition around Aβ plaque at different distance intervals in both 
eight- and 13-month samples of the 2,766-gene dataset. Stacked bar plot showing 
the averaged density of major cell types in the cortex and hippocampus from 
different distance intervals around the Aβ plaque. The overall cell density of each 
cell type in each region was included as the reference for comparison (overall). 
Asterisks denote significantly enriched cell types in each distance interval. 
One-sided one-sample t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. 
overall cell density.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Additional gene expression and spatial analysis of 
microglia. a, UMAP showing three subclusters of 3,732 microglia cells across 
different samples. b, Diffusion maps showing the subpopulation identified 
by predicted labels generated by the CCA integration with the astrocyte 
population from Mathys et al12. Cells labeled as Mic0 and Mic1 from Mathys et al. 
were plotted separately for comparison. c, Heatmap showing the proportions 
(color bar, scaled per column) of microglia cluster IDs from Mathys et al12. 
(rows) mapped to STARmap PLUS microglia subpopulations (columns). Cells 
were excluded if their label prediction score were less than 0.5. d, Spatial map 
of microglia subtypes in control and TauPS2APP samples. Scale bars, 100 μm. 
e, Cell-type composition around Aβ plaque in different distance intervals 
for the TauPS2APP samples at eight months. Stacked bar plot showing the 
density of each microglia subpopulation in each distance interval around the 
Aβ plaque. Asterisks denote significantly enriched microglia subtypes in each 

distance interval. One-sided one-sample t-test, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 vs. overall cell density. f, Volcano plots showing the differentially 
expressed genes (DEG) of microglia in TauPS2APP and control comparisons at 
eight- and 13-month time point (y-axis: -log adjusted p-value, x-axis: average 
log fold change). The two-sided Wilcoxon rank-sum test. Genes (p-value < 0.05, 
absolute value of lnFC > 0.1) are marked in red (up-regulated) or blue (down-
regulated). g, Matrix plot showing the z-scores of SDEGs of microglia across 
multiple distance intervals from plaques. h, Gene ontology enrichment analysis 
(Fisher’s one-sided test) results of DEGs in microglia of the 13-month TauPS2APP 
samples. i, Barplots showing the DEG enrichment significance (the Chi squared 
test) of co-expression modules of microglia identified by scWGCNA. The gene 
module with the most significant DEG enrichment (MM1) is highlighted. j, 
Matrix plot showing the averaged z-score value of microglia gene modules 
across multiple distance intervals.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Identification of disease-associated astrocyte 
populations in TauPS2APP mouse model through comparative studies 
with other AD mouse models and human patient samples. a, UMAP showing 
three subclusters of 6,789 astrocytes across samples. b, Schematic plot showing 
the basic idea of CCA integration and label transfer. In total, 72,165 cells from 
TauPS2APP and control mice were integrated with 80,660 cells from 48 human 
individuals with or without AD pathology in Mathys et al12. c, UMAPs showing 
the predicted labels (top) and scores (bottom) of STARmap PLUS cells generated 
by the CCA integration with cells from Mathys et al12. d, Heatmap showing the 
proportions (color bar, scaled per column) of cluster IDs from Mathys et al12.  
(rows) mapped to STARmap PLUS cells (columns). Cells were excluded  
if their label prediction score were less than 0.5. e, Diffusion maps showing  

the subpopulation identified by the present study (top) and predicted labels 
generated by the CCA integration with the astrocyte population from  
Mathys et al12. (bottom). f, Heatmap showing the proportions (color bar, 
scaled per column) of astrocyte cluster IDs from Mathys et al. (rows) mapped 
to STARmap PLUS astrocyte subpopulations (columns). Cells were excluded 
if their label prediction score were less than 0.5. g, Diffusion maps showing 
the subpopulation identified by the present study (top) and predicted labels 
generated by the CCA integration with the astrocyte population from Habib et al9.  
(bottom). h, Heatmap showing the proportions (color bar, scaled per column) 
of astrocyte cluster IDs from Habib et al9. (rows) mapped to STARmap PLUS 
astrocyte subpopulations (columns). Cells were excluded if their label prediction 
score were less than 0.5.
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Extended Data Fig. 6 | Additional gene expression and spatial analysis of 
astrocytes. a, Spatial map of astrocyte subtypes in control and TauPS2APP 
samples. Scale bars, 100 μm. b, Cell-type composition around Aβ plaque in 
different distance intervals for the TauPS2APP samples at eight months. Stacked 
bar plot showing the density of each astrocyte subpopulation in each distance 
interval around the Aβ plaque. The overall cell density of each subpopulation 
in each region was included as the reference for comparison. Asterisks denote 
significantly enriched astrocyte subclusters in each distance interval. One-sided 
one-sample t-test, *P < 0.05, **P < 0.01 vs. overall cell density. c, Volcano plots 
showing the differentially expressed genes of astrocytes in AD and control 
comparison at eight and 13 months (y-axis: -log adjusted p-value, x-axis: average 

log fold change). The two-sided Wilcoxon rank-sum test. Genes (p-value < 0.05, 
absolute value of lnFC > 0.1) are marked in red (up-regulated) or blue (down-
regulated). d, Gene ontology enrichment analysis (Fisher’s one-sided test) 
results of DEGs in astrocytes of the 13-month TauPS2APP samples. e, Matrix plot 
showing the z-scores of SDEGs of microglia across multiple distance intervals 
from plaques. f, Barplots showing the DEG enrichment significance (the Chi 
squared test) of co-expression modules of astrocyte identified by scWGCNA. The 
gene module with the most significant DEG enrichment (AM3) is highlighted. g, 
Matrix plot showing the averaged z-score value of astrocyte gene modules across 
multiple distance intervals.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01251-x

Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Additional gene expression and spatial analysis 
of oligodendrocytes and OPC. a, UMAP showing subclusters of 11,265 
oligodendrocytes and 1,269 OPCs across samples. b, Diffusion map showing 
the normalized expression level of oligodendrocyte lineage marker genes in 
oligodendrocytes and OPCs. c, Cell-resolved spatial map for the oligodendrocyte 
and OPC population of control and TauPS2APP mice. Scale bars, 100 μm. d, 
Cell type composition around Aβ plaque in different distance intervals for the 
TauPS2APP samples at eight months. Stacked bar plot showing the density 
of each oligodendrocyte subpopulation and OPC in each distance interval 
around the Aβ plaque. Asterisks denote significantly enriched oligodendrocyte 
subclusters and OPC in each distance interval. One-sided one-sample t-test, 
*P < 0.05 vs. overall cell density. e, Cell compositions in grid regions with different 
Tau positive pixel percentage of the TauPS2APP samples at eight months: 
zero (0%), low (50%), high (100%). One-sided one-sample t-test, *P < 0.05, 
**P < 0.01, ****P < 0.0001 vs. zero p-tau bin. f, Volcano plots showing DEGs of 
oligodendrocyte in AD and control comparison at eight and 13 months (y-axis: 

-log adjusted p-value, x-axis: average log fold change). The two-sided Wilcoxon 
rank-sum test. Genes (p-value < 0.05, absolute value of lnFC > 0.1) are marked 
in red (up-regulated) or blue (down-regulated). g, Gene ontology enrichment 
analysis (Fisher’s one-sided test) results of DEGs in oligodendrocytes of the 
13-month TauPS2APP samples. h, Matrix plot showing the z-scores of spatial 
DEGs of oligodendrocytes across multiple distance intervals from plaques. i, 
Barplots showing the DEG enrichment significance (the Chi squared test) of co-
expression modules of astrocyte identified by scWGCNA. The gene module with 
the most significant DEG enrichment (AM3) is highlighted. j, Matrix plot showing 
the averaged z-score value of astrocyte gene modules across multiple distance 
intervals. k, Matrix plot showing the z-scores of DEGs or SDEGs in the disease-
associated gene module of oligodendrocytes in each distance interval around the 
Aβ plaque in TauPS2APP 13-month sample. The total averaged scaled expression 
level in different distance intervals was visualized by the bars on top of the matrix 
plots. l, Gene ontology enrichment analysis (Fisher’s one-sided test) results of 
disease-associated gene module in oligodendrocytes.
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Extended Data Fig. 8 | Spatial maps for neuron populations of control and TauPS2APP mice. a, Cell-resolved spatial map for the excitatory neuron of control and 
TauPS2APP mice. Scale bars, 100 μm. b, Cell-resolved spatial map for the inhibitory neuron population of control and TauPS2APP mice. Scale bars, 100 μm.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional gene expression and spatial analysis of 
neurons. a,b, Boxplot showing the density (number of cells per mm2) of each 
excitatory neuron subcluster (a) and inhibitory neuron subcluster (b) in the 
cortex and hippocampus region in Control and TauPS2APP mice at two time 
points in eight independent samples. Box, 75% and 25% quantiles. Line, median. 
Dots or forks, individual samples. Student’s t-test, one-sided *P < 0.05. c,d, 
Neuron composition around the plaque. Stacked bar charts showing the density 
(number of cells per mm2) of each subcluster of excitatory (c) and inhibitory 
(d) neuron population from different brain regions at each different distance 
intervals (0-10, 10-20, 20-30, 30-40, 40-50 μm) to the Aβ plaque from the cortex 

and hippocampus region of TauPS2APP eight-month sample. The cell density of 
each subpopulation in each area was included as the reference for comparison 
(Overall). Asterisks denote significantly enriched neuron subclusters in each 
distance interval. One-sided one-sample t-test, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 vs. overall cell density. e,f, Synaptic gene ontology term 
enrichment of DEGs (p-value < 0.05) identified in the TauPS2APP and Control 
comparison for all neuron population (e) and neurons in the dentate gyrus region 
(f) using SynGO. Color of the sunburst plot represents -log10 Q-value at 1% FDR. 
g, Gene ontology enrichment analysis (Fisher’s one-sided test) results of DEGs in 
dentate gyrus neurons of the 13-month TauPS2APP samples.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Validation of cell-type composition and spatial gene 
expression in TauPS2APP mice. a, Gene expression heatmaps for representative 
markers aligned with each top-level cell type of 64-gene (validation) datasets. 
Expression for each gene is z-scored across all genes in each cell. b, UMAP plot 
visualizing a non-linear dimensionality reduction for the transcriptomic profiles 
of 36,625 cells from four samples of the validation dataset. Cells are colored as 
in (a). c, Spatial atlas of top-level cell types in cortex and hippocampus regions 
of four samples in the 64-gene dataset. Scale bars, 100 μm. d, Barplot showing 
the number of cells per top-level cluster in 2,766-genes and 64-genes datasets. 
Data are represented as mean with 95% CI. Student’s t-test, two-tailed *P < 0.05, 
**P < 0.01. e,f, UMAPs showing the Gfap gene expression (e) and normalized 
GFAP protein signal (f) in 64-genes validation dataset. g, Violin plot shows the 
normalized GFAP protein signal level in the astrocyte cell population (N = 3,423 
cells) compared to others (N = 33,202 cells). Box plots depict the median (center) 
and interquartile range (IQR, bounds of the box), with whiskers extending to the 

maxima/minima or to the median ± 1.5× IQR. Two-sided t-test, ****P < 0.0001. 
h, Representative immunofluorescence images in the brain section of 64-gene 
validation samples (N = four independent animals). Astrocytes were marked 
by yellow arrows in the raw data. i, Cell-type composition around Aβ plaque at 
different distance intervals in both eight- and 13-month samples of the 64-gene 
validation dataset. Asterisks denote significantly enriched cell types in each 
distance interval. One-sided one-sample t-test, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 vs. overall cell density. j, Barplot showing the cell density of 
astrocyte, microglia, oligodendrocyte and OPC in hippocampus alveus region in 
the 2,766- gene samples and validation samples. k, Matrix plot showing the row-
wise scaled expression values of top significantly altered (rank by p-value) DEGs 
of glial cells and neuronal cells from TauPS2APP versus control samples. l,m, 
Matrix plot showing PIG that overlapped with 64-gene in each distance interval 
around the Aβ plaque in the eight-month (l) and TauPS2APP 13-month sample 
(m) of the 64-gene validation dataset. Colored by row-wise z-score.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Leica LAS-X microscope imaging software was used during data acquisition. Huygens 20.10 was used for image deconvolution.

Data analysis MATLAB 2019b was used for imaging analysis of in situ sequencing images. Python 3.6 was used as a platform for some of the downstream 

analysis. StarDist python package was used for cell segmentation. Scanpy v1.4.6 was utilized for cell clustering. R (version 3.6.3) was used as 

another platform for rest of data analysis. EBImage v4.28.1 was utilized for processing of plaque and tau images. All in-situ single cell 

sequencing data was analyzed and visualized using Seurat v4.0.2. Pseudo-time analysis was performed by Monocle3 v0.2.1. Also ggplot2 

v3.3.5  and ComplexHeatmap v2.7.10.9001 were utilized for data visualization. Fiji macro (ImageJ 1.53f51) was used for p-Tau images 

processing. gprofiler2 package v0.1.9, Cytoscape v3.9.1, EnrichmentMap v3.3.1, AutoAnnotation v1.3.3 and SynGO (https://syngoportal.org/

index.html) were used for pathway related analysis. scWGCNA v1.0.0 R package was used for gene module analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The STARmap PLUS sequencing data are available on Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP1375) and Zenodo (https://

doi.org/10.5281/zenodo.7332091).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender This study did not include any human research participants.

Population characteristics See above.

Recruitment No human participants were recruited in this study.

Ethics oversight No study protocol related to human research participants was involved in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For 2,766-gene experiments, two 8-month TauPS2APP male mice, two 8-month WT male mice, two 13-month TauPS2APP male mice, and two 

13-month WT male mice were used. For the 64-gene validation experiment, one 8-month TauPS2APP male mouse, one 8-month WT male 

mouse, one 13-month TauPS2APP male mouse, and one 13-month WT male mouse were used. No statistical methods were used to pre-

determine sample sizes but our sample sizes are similar to those reported in previous publications.

Data exclusions During the single cell transcriptomic analysis, cells with reads less than 41 or more than 680 were removed to exclude potential cell residues 

or under-segmented cell clusters. 

Replication All the major findings were validated in the second biological replicate. 

Randomization In each experimental batch, animals were chosen randomly based on their age. However, we matched transgenic Alzheimer's model 

TauPS2APP animals with WT non-transgenic littermate from the same mouse colony and age.

Blinding For all samples received, the experimentalist did not acknowledge the sample identity (i.e. disease condition) until the experiment finished. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Phospho-Tau (Ser202, Thr205) Monoclonal Antibody (AT8), Biotin; Immunohistochemistry (IHC), ThermoFisher; Catalog # MN1020B; 

Clone: AT8; 1:100 dilution. 

Anti-GFAP antibody, Immunohistochemistry (IHC), abcam; Catalog # ab4674;1:500 dilution. 

Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488;  Immunohistochemistry (IHC), Thermo Fisher; 

Catalog # A-11001; 1:100 dilution. 

Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor 594; Immunohistochemistry (IHC), Thermo Fisher; Catalog # A-11042; 

1:100 dilution.

Validation Antibodies were chosen based on a literature review for each antibody to identify the best candidate for our experiments. Validation 

was determined by reviewing the manufacturer's literature, other published research, and prior experiments in the lab. Commercial 

antibodies were validated by the manufacturer:  

For anti-Phospho-Tau: https://www.thermofisher.com/antibody/product/Phospho-Tau-Ser202-Thr205-Antibody-clone-AT8-

Monoclonal/MN1020B 

For anti-GFAP: https://www.abcam.com/gfap-antibody-ab4674.html?productWallTab=ShowAll

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Human HeLa cell line used in this study was purchased from ATCC (CCL-2, lot 70016358).

Authentication The cell line has been authenticated by the STR method.

Mycoplasma contamination The cell lines were confirmed as mycoplasma negative by DAPI (4",6-diamidino-2-phenylindole) or Hoechst DNA staining and 

microscope imaging.

Commonly misidentified lines
(See ICLAC register)

None.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals TauPS2APP: the pR5-183 line expressing the P301L mutant of human tau and PS2N141I and APPswe (PS2APPhomo; P301Lhemi), 

male, at the age of 8 months or 13 months. WT: no-transgenic pR5-183 line, male, at the age of 8 months or 13 months. Mice were 

group-housed up to 5 mice per cage in individually ventilated cages within animal rooms maintained on a 12:12-hour, light:dark 

cycle. Animal rooms were temperature and humidity-controlled, between 20-26°C and 30-70% respectively, with 10-15 room air 

exchanges per hour. Mice maintained on a regular chow diet.

Wild animals The study did not include any wild animals.

Reporting on sex The findings in this study applied to both sexes. Sex was considered in study design and we choose male mice for this study to 

decrease the influence of physiological parameters. Sex based analyses were not performed in this study as this mouse model had 

been used for a long time and no evidence showed that sex would influence the histopathology of the mice.

Field-collected samples The study did not include any samples collected at the field.

Ethics oversight All animal care and handling procedures were reviewed and approved by the Genentech IACUC and were conducted in full 

compliance with regulatory statutes, IACUC policies and NIH guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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